Что такое биохимия


Биохимия - это... Что такое Биохимия?

Биохи́мия (биологи́ческая, или физиологи́ческая хи́мия) — наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности. Термин «биохимия» эпизодически употреблялся с середины XIX века, в классическом смысле он был предложен и введён в научную среду в 1903 году немецким химиком Карлом Нойбергом (Carl Neuberg).

Биохимия находится на стыке нескольких наук, прежде всего — биологии и химии.

Смежные дисциплины

Возникнув как наука о химии жизни в конце XIX века, чему предшествовало бурное развитие органической химии, биохимия отличается от органической химии тем, что исследует только те вещества и химические реакции, которые имеют место в живых организмах, прежде всего в живой клетке. Согласно этому определению, биохимия охватывает также многие области клеточной биологии и включает в себя молекулярную биологию [1]. После выделения последней в особую дисциплину, размежевание между биохимией и молекулярной биологией в основном сформировалось как методологическое и по предмету исследования. Молекулярные биологи преимущественно работают с нуклеиновыми кислотами, изучая их структуру и функции, в то время как биохимики сосредоточились на белках, в особенности на ферментах, катализирующих биохимические реакции.

История развития

Как самостоятельная наука биохимия сформировалась примерно 100 лет назад, однако биохимические процессы люди использовали ещё в глубокой древности, не подозревая, разумеется, об их истинной сущности. В самые отдалённые времена уже была известна технология таких основанных на биохимических процессах производств, как хлебопечение, сыроварение, виноделие, выделка кож. Необходимость борьбы с болезнями заставляла задумываться о превращениях веществ в организме, искать объяснения целебным свойствам лекарственных растений. Использование растений в пищу, для изготовления красок и тканей также приводило к попыткам понять свойства веществ растительного происхождения.

Арабский учёный и врач X века Авиценна в своей книге «Канон врачебной науки» подробно описал многие лекарственные вещества.

Итальянский учёный и художник Леонардо да Винчи на основании своих опытов сделал важный вывод о том, что живой организм способен существовать только в такой атмосфере, в которой может гореть пламя.

XVIII век ознаменовался трудами М. В. Ломоносова и А. Л. Лавуазье. На основе открытого ими закона сохранения массы веществ и накопленных к концу столетия экспериментальных данных, была объяснена сущность дыхания и исключительная роль в этом процессе кислорода.

Изучение химии жизни уже в 1827 г. привело к принятому до сих пор разделению биологических молекул на белки, жиры и углеводы. Автором этой классификации был английский химик и врач Уильям Праут. В 1828 году немецкий химик Ф. Вёлер синтезировал мочевину: сначала — из циановой кислоты и аммиака (выпариванием раствора образующегося цианата аммония), а позже в этом же году — из углекислого газа и аммиака. Тем самым впервые было доказано, что химические вещества живого организма могут быть синтезированы искусственно, вне организма. Работы Вёлера нанесли первый удар по теориям представителей школы виталистов, предполагавших присутствие во всех органических соединениях некой «жизненной силы». Последующими мощными толчками в этом направлении химии явились лабораторные синтезы липидов (в 1854 году — П. Бертло, Франция) и углеводов из формальдегида (1861 — А. М. Бутлеров, Россия). Бутлеровым была также разработана теория строения органических соединений (1861).

В 1882 году Иван Горбачевский впервые в мире осуществил синтез мочевой кислоты из глицина. В дальнейших исследованиях он установил источник и пути её образования в человеческом и животном организмах. В 1885 году ему удалось получить метилмочевую кислоту из метилгидантоина и карбамида. В 1886 году он предложил новый метод синтеза креатина, а в 1889—1891 годах открыл фермент ксантиноксидазу. Иван Горбачевский одним из первых указал, что аминокислоты являются составляющими белков.

Новый толчок развитию биологической химии дали работы по изучению брожения, инициированные Луи Пастером. В 1897 г. Эдуард Бухнер доказал, что ферментация сахара может происходить в присутствии бесклеточного дрожжевого экстракта, и это процесс не столько биологический, сколько химический. На рубеже XIX и XX веков работал немецкий биохимик Э. Фишер. Он сформулировал основные положения пептидной теории строения белков, установил структуру и свойства почти всех входящих в их состав аминокислот. Но лишь в 1926 г. Джеймсу Самнеру удалось получить первый чистый фермент, уреазу, и доказать, что фермент — это белок.

Биохимия стала первой биологической дисциплиной с развитым математическим аппаратом благодаря работам Холдейна, Михаэлиса, Ментен и других биохимиков, создавших ферментативную кинетику, основным законом которой является уравнение Михаэлиса-Ментен.

Открытие ферментов позволило начать грандиозную работу по полному описанию всех процессов метаболизма, не завершённую до сих пор. Одними из первых значительных находок в этой области стали открытия витаминов, гликолиза и цикла трикарбоновых кислот.

В 1928 г. Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок, а нуклеиновая кислота. Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма. В 1953 году американский биолог Дж. Уотсон и английский физик Ф. Крик описали структуру ДНК — ключ к пониманию принципов передачи наследственной информации. Это открытие означало рождение нового направления науки — молекулярной биологии.

Методы

В основе биохимической методологии лежит фракционирование, анализ, изучение структуры и свойств отдельных компонентов живого вещества. Методы биохимии преимущественно формировались в XX веке; наиболее распространенными являются хроматография, изобретённая М.С. Цветом в 1906 г., центрифугирование (Т. Сведберг, 1923 г., Нобелевская премия по химии 1926 г.) и электрофорез (А. Тизелиус, 1937 г., Нобелевская премия по химии 1948 г.).

С конца ХХ в. в биохимии всё шире применяются методы молекулярной и клеточной биологии, в особенности искусственная экспрессия и нокаут генов в модельных клетках и целых организмах (см. генная инженерия, биотехнология). Определение структуры всей геномной ДНК человека выявило приблизительно столько же ранее неизвестных генов и их неизученных продуктов, сколько уже было известно к началу XXI века благодаря полувековым усилиям научного сообщества. Оказалось, что традиционный химический анализ и очистка ферментов из биомассы позволяют получить лишь те белки, которые в живом веществе присутствуют в сравнительно большом количестве. Не случайно основная масса ферментов была открыта биохимиками в середине XX века и к концу столетия распространилось убеждение, что все ферменты уже открыты. Данные геномики опровергли эти представления, но дальнейшее развитие биохимии требовало изменения методологии. Искусственая экспрессия ранее неизвестных генов предоставила биохимикам новый материал для исследования, часто недоступный традиционными методами. В результате возник новый подход к планированию биохимического исследования, который получил название обратная генетика или функциональная геномика[2]. Эта методология предоставляет биохимикам шанс изучать функции продуктов уже известных генов, в то время как ранее наука шла по пути определения структуры генов, кодирующих уже известные ферменты.

См. также

Примечания

Литература

  • Марри Р. и др. Биохимия человека. — М., 1993.
  • Введение в биохимическую экологию. — М.: Издательство Московского университета, 1986.

Ссылки

Основные группы биохимических молекул

 

dic.academic.ru

Что такое биохимия | intalent.pro

Биохимия – это целая наука которая изучает, во-первых, химический состав клеток и организмов, а во-вторых, химические процессы, которые лежат в основе их жизнедеятельности. Термин был введён в научную среду в 1903 году химиком из Германии по имени Карл Нойберг.

Однако сами процессы биохимии были известны ещё с давних времён. И на основе этих процессов люди пекли хлеб и варили сыр, делали вино и выделывали кожи животных, лечили болезни при помощи трав, а потом и лекарственных средств. И в основе всего этого лежат именно биохимические процессы.

Так, например, не зная ничего о самой науке, арабский учёный и врач Авиценна, который жил в 10 веке, описал многие лекарственные вещества и их влияние на организм. А Леонардо да Винчи сделал вывод – живой организм способен жить только в той атмосфере, в которой способно гореть пламя.

Как и любая другая наука, биохимия применяет свои собственные методы исследования и изучения. И самые важные из них – это хроматография, центрифугирование и электрофорез.

Биохимия сегодня- это наука, которая сделала большой скачок в своём развитии. Так, например, стало известно, что из всех химических элементов на земле в теле человека присутствует чуть больше четверти. И большинство редких элементов, кроме йода и селена, совершенно не нужны человеку для того, чтобы поддерживать жизнь. А вот такие два распространённых элемента, как алюминий и титан в организме человека пока найдены не были. Да и найти их просто невозможно – для жизни они не нужны. И среди всех них только 6 – это те, что необходимы человеку ежедневно и именно из них состоит наш организм на 99%. Это углерод, водород, азот, кислород, кальций и фосфор.

Биохимия – это наука, которая изучает такие важные составляющие продуктов, как белки, жиры, углеводы и нуклеиновые кислоты. Сегодня об этих веществах мы знаем практически всё.

Некоторые путают две науки – биохимию и органическую химию. Но биохимия – это наука, которая изучает биологические процессы, которые протекают только в живом организме. А вот органическая химия – это наука, которая изучает те или иные соединения углерода, а это и спирты, и эфиры, и альдегиды и многие-многие другие соединения.

Биохимия – это ещё и наука, в состав которой входит цитология, то есть изучение живой клетки, её строение, функционирование, размножение, старение и смерть. Нередко этот раздел биохимии называют молекулярной биологией.

Однако молекулярная биология, как правило, работает с нуклеиновыми кислотами, а вот биохимикам больше интересны белки и ферменты, которые запускают те или иные биохимические реакции.

Сегодня биохимия всё чаще и чаще применяет разработки генной инженерии и биотехнологий. Однако сами по себе – это тоже разные науки, которые изучают каждый своё. Например, биотехнология изучает методы клонирования клеток, а генная инженерия пытается найти способы того, как заменить больной ген в организме человека на здоровый и тем самым избежать развития многих наследственных заболеваний.

И все эти науки тесно связаны между собой, что помогает им развиваться и работать на благо человечества.

Источник: TOP Author

intalent.pro

Биологическая химия - Биохимия

Приветствую всех посетителей моего персонального сайта biokhimija.ru, посвященного биологической химии человека! Как вы поняли, здесь публикуются материалы, связанные именно с этой наукой. Целевой аудиторией сайта являются студенты медицинских вузов, но я искренне надеюсь, что любой гость найдет здесь что-то полезное для себя.

На данном сайте представлены материалы для моих лекций по Общей биохимии.

Вы можете взять их упрощенную версию в pdf-формате, скачав архив на странице Скачать.

Для цельного восприятия метаболизма и понимания источников энергии в клетке будет полезна "Общая схема катаболизма" ("Схема биологического окисления"). 

Также представлено пособие по Клинической биохимии, описывающее некоторые биохимические показатели организма, используемые в клинико-диагностической практике.

Что такое биохимия?

Итак, существует множество определений этого термина:

Биохимия по Большой Медицинской Энциклопедии это:

– биологическая наука, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения и связь этих превращений с деятельностью органов и тканей.

Биохимия (биологическая, или физиологическая химия) по Википедии это:

– наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности.

Биохимия по энциклопедии Брокгауза и Ефрона это:

– греч., учение о химических процессах в живых существах.

Биохимия (биол. химия) по XuMuK.ru:

– изучает хим. состав и структуру в-в, содержащихся в живых организмах, пути и способы регуляции их метаболизма, а также энергетич. обеспечение процессов, происходящих в клетке и организме.

Однако все эти определения не дают ответ на вечный вопрос моих студентов:

Зачем врачу нужна биологическая химия?

Студентам, по их молодости, еще трудно понять значимость фундаментальных дисциплин, хочется скорее, как они выражаются, "начать изучать медицину".

Отступая от прямого ответа на поставленный вопрос, обращу внимание читателя на ту лавину знаний, которая обрушивается на студента-медика в первые три года пребывания в медицинском университете. Часть этих знаний как бы не имеет отношения к медицине – латинский язык, химия, физика, гуманитарные дисциплины, но их задача – сформировать представление о целостности нашего мира, о его единстве и неразрывности явлений.

Еще одна группа наук – медицинские науки, это анатомия, гистология, физиология и биохимия человека, патоанатомия и патофизиология, фармакология. Их значение можно сравнить с древним представлением об устройстве мира. Анатомия, гистология, цитология – океан, без которого все остальное не имеет значения. Биохимия, физиология и патофизиология – три кита в этом океане. Они сообщают будущему врачу о принципах функционирования организма, о химических процессах в живой материи. Их задача – проложить мосты в клинические дисциплины, дать врачу возможность понять суть процесса, вызывающего болезнь.

Все клинические дисциплины базируются на этих трех китах – биохимии, физиологии и патофизиологии. Убираем китов – и остаются только больное место  и  ничем необоснованные гадания о типе  болезни, ее причинах и способах лечения.

Если попытаться сформулировать иначе, то все поле медицинских знаний можно поделить на три зоны:

  • Зона 1. Клеточно-молекулярный и межорганный уровень жизни – этим занимается анатомия и гистология, биохимия и физиология.
  • Зона 2. Процессы, порождающие болезни – здесь на первом плане патологическая анатомия и патологическая физиология.
  • Зона 3. Внешние проявления болезней с их симптомами и синдромами и ликвидация этих проявлений – здесь активны клинические науки (терапия, хирургия и др.).

Многие врачи полностью находятся в третьей зоне. И что самое печальное – они даже не понимают необходимости выйти во вторую зону, не говоря уж о первой. Без комплексных знаний биологической химии, физиологии и патофизиологии такие врачи уподобляются собаке Павлова, которую выдрессировали нажимать на кнопки при зажигании лампочки. Они знают, что делать при симптомах, описанных в учебнике, хорошо зазубрили алгоритм действий в рамках своей узкой специализации, но оказываются в тупике, когда что-то идет не так. Потому что не знают и не понимают основ...  А "как-то не так" идет очень часто, в "чистом" виде болезней практически не бывает. В связи с этим позволю себе процитировать участника томского форума с ником Ded_pihto: "Дело в том, что ... за время обучения в мединституте тебя учат лечить болезнь. А на практике сталкиваешься со всякими атипичными случаями, стертыми формами, еще какой-нибудь хренью."

Настоящему врачу надо уметь видеть и увязывать в единое целое функционирование разных органов, как например, кишечник и нервная система, печень и кожа, кишечник и бронхи, видеть единство разных процессов, например, стеаторея и аллергия, кровоточивость и дисбактериоз. И при этом не просто увязывать, а находить причинно-следственные связи.

И только после этого врачу, вернее пациенту, может помочь фармакология – не снять симптомы, а по настоящему помочь. Но и здесь без знаний первой зоны не обойтись, ведь, как правило,  лекарства действуют на биохимические процессы. Подстегивая или замедляя их, лекарства изменяют метаболизм клеток и облегчают им задачу выздоровления. В то же время, многие препараты зачастую обладают массой побочных эффектов, список которых превосходит перечень показаний. Нетрудно понять, что и побочные эффекты лекарств – это вмешательство в химические процессы клеток, т.е. в биохимию!

Итак, необходимость биологической химии для того, кто хочет излечивать, а не просто лечить, не подлежит сомнению. Двинемся дальше….

С уважением, Тимин Олег Алексеевич.

 

biokhimija.ru

БИОХИМИЯ - это... Что такое БИОХИМИЯ?

(биол. химия), изучает хим. состав и структуру в-в, содержащихся в живых организмах, пути и способы регуляции их метаболизма, а также энергетич. обеспечение процессов, происходящих в клетке и организме. Становление Б. как науки произошло на рубеже 19 и 20 вв.; термин "Б." предложен в 1903 К. Нейбергом.

Истоки биохим. знаний обнаруживаются в трудах ученых античного периода. Первые сведения о составе растит. и животных тканей начали появляться в средние века, когда объектами хим. анализа становились лек. растения, органы и ткани животных. Зарождение научных основ Б. началось во 2-й пол. 18 в. благодаря применению хим. методов анализа в физиологии. Так, в 70-х гг. было установлено, что О 2 атмосферы потребляется животными и выделяется растениями, доказано, что дыхание человека и животных с хим. точки зрения представляет собой процесс окисления (A. JIaвуазье 1770). В эти же годы выполнены исследования, приведшие к открытию фотосинтеза (Дж. Пристли, 1772; Я. Ингехауз, 1779), а Л. Спалланцани было показано, что процесс пищеварения можно рассматривать как сложную цепь хим. превращений.

К нач. 19 в. постепенно сформировались понятия о белках, жирах, углеводах, орг. к-тах; из прир. источников (растительных и животных) был выделен ряд орг. в-в: мочевина из мочи (Г. Руэль), глицерин, лимонная, яблочная, молочная и мочевая к-ты (К. Шееле), аспарагин (Л. Воклен) глюкоза и др. В 1828 Ф. Вёлер синтезировал мочевину из цианата аммония, показав тем самым несостоятельность учения о жизненной силе (витализма). При исследовании брожения были получены новые важные сведения о метаболизме в-в в живых организмах. Хим. ур-ние спиртового брожения глюкозы предложено в 1815 Ж. Гей-Люссаком. В 1837 Й. Берцелиус постулировал, что брожение - каталитич. процесс; Ю. Либих считал, что дрожжи (их Л. Пастер относил к живым организмам), вызывающие брожение представляют собой катализатор. В 1877 М. М. Манассеина в России установила, что способностью сбраживать сахар обладают и убитые дрожжи. Для подобного рода каталитич. агентов В. Кюне предложил название "энзим" (в пер. с греч. - "закваска"). В 1897 братья Э. и П. Бухнеры получили бесклеточный экстракт дрожжей (зимазу), вызывающий брожение. С последующего затем интенсивного изучения св-в дрожжевых экстрактов берет начало совр. энзимология. К др. важнейшим достижениям Б. 2-й пол. 19 в. относятся выделение гликогена из печени и обнаружение его превращения в глюкозу, поступающую в кровь (К. Бернар,-1850-55), открытие дезоксирибонуклеиновой к-ты (Ф. Мишер,_1869), обнаружение специфичности ферментативного катализа (концепция "ключ-замок", Э. Фишер, 1894), обоснование полипептидной теории строения белка (Ф. Гофмейстер, Э. Фишер, 1902), разработка методов выделения и изучения митохондрий (Г. Альтман, 1890), первое упоминание о витаминах (X. Эйкман, 1896). В эти же годы сформулированы осн. положения учения о наследственности (Г. Мендель, 1866), предложена перекисная теория биол. окисления (А. Н. Бах, 1897), открыт хемосинтез у микроорганизмов (С. Н. Виноградский, 1887), выяснена природа пищеварит. ферментов (И. П. Павлов, 1902), осуществлено отделение панкреатич. амилазы от трипсина (А. Я. Данилевский, 1862) 1-я пол. 20 в. была периодом становления фундам. биохим. концепций. В энзимологии разработаны теорегич. основы кинетики ферментативных р-ций (Л. Михаэлис, М. Ментен, 1913), впервые получены в кристаллич. виде ферменты уреаза, пепсин и трипсин (Дж. Самнер, Дж. Нортроп, 20-30-е гг.), для изучения ферментсубстратных комплексов стали использовать фотометрич. методы (Б. Чане, 40-е гг.). В конце 20-х гг. были выделены из мышечных экстрактов АТФ и креатинфосфат, открыта АТФ-азная активность миозина (В. А. Энгельгардт, М. Н. Любимова 1939), в 40-е гг. Ф. Липманом разработаны представления о высокоэнергетич. фосфатах и установлена центральная роль АТФ в биоэнергетике клетки. В области изучения биол. окисления и метаболич. циклов был открыт "дыхательный фермент" цитохррмоксидаза (О. Варбург 1912), сформулирована концепция дыхательного фосфорилирования (В. А. Энгельгардт, 1931), проведено количеств, изучение окислит. фосфорилирования в р-циях гликолиза (В. А. Белицер, 1937). Открыты р-ция трансаминирования (А. Е. Браунштейн, 1938), циклы мочевины и трикарбоновых к-т (X. Кребс, 1933, 1937), были открыты флавопротеиды (1932), никотинамиднуклеотиды (О. Варбург, У. Эйлер, 1936). Вслед за установлением структуры хлорофила (Р. Вильштеттер, А. Штоль, 1913), значит. успех достигнут в выяснении механизма фотосинтеза (М. Калвин, 1948). В 40-е гг.

Л. Лелуаром открыты осн. пути биосинтеза углеводов, А. Сент-Дьёрдьи выделил аскорбиновую к-ту (20-30-е гг.). Открытие ДНК у растений (А. Н. Белозерский, 1936) способствовало признанию биохим. единства растит. и животного мира.

В эти годы созданы новые физ.-хим. методы анализа. Были заложены основы хроматографич. методов (М. С. Цвет, 1906). В 20-х гг. Т. Сведберг предложил использовать для седиментации белков ультрацентрифугу, вскоре этим методом был выделен ряд вирусов. В 30-х гг. А. Тизелиусом заложены основы электрофореза, в 1944 А. Мартином и др. создана распределит. хроматография, для определения структуры прир. соед. впервые стал использоваться рентгеноструктурный анализ (Д. Кроуфут-Ходжкин, 40-е гг.). Благодаря использованию физ.-хим. методов в 50-х гг. достигнуты крупные успехи в изучении двух важнейших классов биополимеров-белков и нуклеиновых к-т: Э. Чаргафф провел детальный хим. анализ нуклеиновых к-т, открыта двойная спираль ДНК (Дж. Уотсон и Ф. Крик, 1953), определена структура инсулина (Ф. Сенгер, 1953), одновременно осуществлен синтез пептидных гормонов-окситоцина и вазопрессина (Дю Виньо, 1953), открыт один из элементов пространственной структуры белков- спираль (Л. Полинг, 1951). В эти годы Р. Замечником открыты рибосомы, что послужило стимулом для изучения механизма синтеза белка.

На основе классич. Б. в этот период возникли самостоят. науки - молекулярная биология и биоорганическая химия. Научное направление, объединяющее эти науки с биофизикой, получило название физ.-хим. биологии. Совр. период в развитии Б. характеризуется новыми достижениями в изучении живой материи. В области энзимологии исследованы сотни ферментных систем, во мн. случаях установлен механизм их каталитич. действия. Новые концепции возникли в области Б. гормонов, в частности в связи с ролью аденилатциклазной системы; в области биоэнергетики, где было открыто участие в генерации энергии клеточных мембран, в познании механизмов передачи нервного возбуждения и биохим. основ высшей нервной деятельности и др. В настоящее время установлен в общих чертах механизм передачи генетич. информации, реализующийся при репликации, транскрипции и трансляции, разработаны методы получения и определения структуры отдельных генов, по существу завершено составление "метаболич. карты", т. е. путей превращения в-в в клетке, свидетельствующей о биохим. общности живых организмов и непрерывности обмена в-в в биосфере.

Достижения Б. широко используются в медицине, с. х-ве (животноводстве, растениеводстве), микробиологии, вирусологии, способствуют становлению новых отраслей науки, напр. генетической инженерии и клеточной инженерии, а также пром-сти, напр. биотехнологии. В совр. обществе высокий уровень развития Б. - необходимое условие научно-технич. прогресса, неотъемлемый элемент общей культуры, материального благосостояния и здоровья человека.

Лит.: Бpayиштейн А. Е., Некоторые черты химической интеграции процессов азотистого обмена, М., 1958; Малер Г., Кордес Ю., Основы биологической химии, пер. с англ., М., 1970; Мецлер Д., Биохимия, пер. с англ., т. 1-3, М., 1980; Уайт А. [и др.]. Основы биохимии, пер. с англ., М., 1981; Страйер Л.. Биохимия, пер. с англ., т. 1-3, М., 1984Ч85; Ленинджер А., Основы химии, пер. с англ., т. 1-3, М., 1985. Ю. А. Овчинников.

Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.

dic.academic.ru

Что такое биохимия, и что она изучает :: SYL.ru

В этой статье мы ответим на вопрос, что такое биохимия. Здесь мы рассмотрим определение этой науки, ее историю и методы исследования, уделим внимание некоторым процессам и определим ее разделы.

Введение

Чтобы ответить на вопрос о том, что такое биохимия, достаточно сказать, что это наука, посвященная химическому составу и процессам, протекающим внутри живой клетки организма. Однако она имеет множество составляющих, узнав которые, можно более конкретизировано составить представление о ней.

В некоторых временных эпизодах XIX века терминологическая единица «биохимия» стала впервые использоваться. Однако была введена в научные круги лишь в 1903 году химиком из Германии - Карлом Нейбергом. Эта наука занимает промежуточную позицию между биологией и химией.

Исторические факты

Ответить на вопрос четко, что такое биохимия, человечество смогло лишь около ста лет назад. Несмотря на то что общество использовало биохимические процессы и реакции еще в далекой древности, оно не подозревало о наличии их истинной сути.

Одними из самых отдаленных примеров может служить изготовление хлеба, виноделие, сыроварение и т. д. Ряд вопросов о целебных свойствах растений, проблем со здоровьем и т. п. заставил человека вникнуть в их основу и природу деятельности.

Развитие общего набора направлений, которые в конечном итоге привели к созданию биохимии, наблюдается уже в древних временах. Ученый-врач из Персии в десятом веке написал книгу о канонах врачебной науки, где смог подробно изложить описание различных лекарственных веществ. В XVII веке ван Гельмонт предложил термин «фермента» как единицы реагента химической природы, участвующей в пищеварительных процессах.

В XVIII веке, благодаря работам А.Л. Лавуазье и М.В. Ломоносова, был выведен закон сохранения массы вещества. В конце того же века было определено значение кислорода в процессе дыхания.

В 1827 году наука позволила создать разделение молекул биологической природы на соединения жиров, белков и углеводов. Этими терминами пользуются до сих пор. Годом позже в работе Ф. Велера было доказано, что вещества живых систем могут синтезироваться искусственными способами. Еще одним важным событием было изготовление и составление теории строения органических соединений.

Основы биохимии формировались многие сотни лет, но приняли четкое определение в 1903 году. Эта наука стала первой дисциплиной из разряда биологических, которая обладала собственной системой математических анализов.

Спустя 25 лет, в 1928 году, Ф. Гриффит провел эксперимент, целью которого было исследование механизма трансформации. Ученый заражал мышей пневмококками. Он убивал бактерии одного штамма и добавлял их к бактериям другого. Исследование показало, что процесс очистки болезнетворных агентов привел к образованию нуклеиновой кислоты, а не белка. Перечень открытий пополняется и в настоящее время.

Наличие смежных дисциплин

Биохимия – это отдельная наука, однако ее созданию предшествовал активный процесс развития органического раздела химии. Главное отличие заключается в объектах исследования. В биохимии рассматриваются только те вещества или процессы, которые могут протекать в условиях живых организмов, а не за их пределами.

В конечном итоге биохимия включила понятие молекулярной биологии. Отличаются они между собой преимущественно методами действий и предметам, которые они изучают. В настоящее время терминологические единицы «биохимия» и «молекулярная биология» стали использоваться в качестве синонимов.

Наличие разделов

На сегодняшний день биохимия включает в себя ряд исследовательских направлений, среди которых:

  • Раздел статической биохимии - наука о химическом составе живых существ, структур и молекулярном разнообразии, функций и т. д.

  • Существует ряд разделов, изучающий биологические полимеры белковых, липидных, углеводных, аминокислотных молекул, а также нуклеиновые кислоты и сам нуклеотид.

  • Биохимия, изучающая витамины, их роль и форму воздействия на организм, возможные нарушения в процессах жизнедеятельности при нехватке или чрезмерном количестве.

  • Гормональная биохимия – наука, изучающая гормоны, их биологический эффект, причины недостатка или переизбытка.

  • Наука об обмене веществ и его механизмах – динамический раздел биохимии (включает в себя биоэнергетику).

  • Исследования молекулярной биологии.

  • Функциональная составляющая биохимии изучает явление химических превращений, отвечающих за функциональность всех компонентов организма, начиная с тканей, а заканчивая всем телом.

  • Медицинская биохимия – раздел о закономерностях обмена веществ между структурами организма под влиянием заболеваний.

Также существуют ответвления биохимии микроорганизмов, человека, животных, растений, крови, тканей и т. д.

Средства исследования и решения проблем

Методы биохимии основываются на фракционировании, анализе, детальном изучении и рассмотрении структуры как отдельного компонента, так и целого организма или его вещества. Большинство из них формировались в течение XX века, а самую широкую известность получила хроматография - процесс центрифугирования и электрофорез.

В конце XX века биохимические методы начали все чаще и чаще находить свое применение в молекулярных и клеточных разделах биологии. Была определена структура всего генома человеческой ДНК. Это открытие дало возможность узнать о существовании огромного ряда веществ, в частности различных белков, которые не обнаруживались при очистке биомассы, в связи с их чрезвычайно малым содержанием в веществе.

Геномика поставила под сомнение огромное количество биохимических знаний и обусловила развитие изменений в ее методологии. Появилось понятие компьютерного виртуального моделирования.

Химическая составляющая

Физиология и биохимия тесно связаны между собой. Это объясняется зависимостью нормы протекания всех физиологических процессов с содержанием различного ряда химических элементов.

В природе можно встретить 90 компонентов периодической таблицы химических элементов, но для жизни необходимо около четверти. Во многих редких компонентах наш организм вовсе не нуждается.

Различное положение таксона в иерархической таблице живых существ обуславливает разную потребность в наличии тех или иных элементов.

99 % человеческой массы состоит из шести элементов (С, Н, N, O, F, Ca). Помимо основного количества данных видов атомов, образующих вещества, нам необходимы еще 19 элементов, но в малых или микроскопических объемах. Среди них имеются: Zn, Ni, Ma, K, Cl, Na и другие.

Биомолекула белка

Главные молекулы, изучением которых занимается биохимия, относятся к углеводам, белкам, липидам, нуклеиновым кислотам, а также внимание этой науки сосредоточенно на их гибридах.

Белки - соединения, обладающие крупными размерами. Они образуются посредством связывания цепочек из мономеров – аминокислот. Большая часть живых существ получает белки при помощи синтеза двадцати видов этих соединений.

Эти мономеры отличаются между собой структурой радикальной группы, которая играет огромную роль в ходе свертывания белка. Цель этого процесса заключается в образовании трехмерной структуры. Соединяются между собой аминокислоты при помощи образования пептидных связей.

Отвечая на вопрос о том, что такое биохимия, нельзя не упомянуть такие сложные и многофункциональные биологические макромолекулы, как белки. Они имеют больше задач, чем полисахариды или нуклеиновые кислоты, которые необходимо выполнить.

Некоторые белки представлены ферментами и занимаются катализом различных реакции биохимической природы, что очень важно для обмена веществ. Другие белковые молекулы могут выполнять роль сигнальных механизмов, образовывать цитоскелеты, участвовать в иммунной защите и т. д.

Некоторые виды белков способны образовывать небелковые биомолекулярные комплексы. Вещества, созданные путем слияния белков с олигосахаридами, позволяют существовать таким молекулам, как гликопротеины, а взаимодействие с липидами приводит к появлению липопротеинов.

Молекула нуклеиновой кислоты

Нуклеиновые кислоты представлены комплексами макромолекул, состоящих из полинуклеотидного набора цепочек. Их главное функциональное предназначение заключается в кодировке наследственной информации. Синтез нуклеиновый кислоты происходит благодаря наличию мононуклеозидтрифосфатных макроэнергетических молекул (АТФ, ТТФ, УТФ, ГТФ, ЦТФ).

Самые широко распространенные представители таких кислот - это ДНК и РНК. Эти структурные элементы находятся в составе каждой живой клетки, от археи, до эукариотов, и даже в вирусах.

Молекула липида

Липиды – это молекулярные вещества, составленные глицерином, к которым посредством сложно-эфирных связей прикрепляются жирные кислоты (от 1 до 3). Такие вещества делят на группы в соответствие с длиной углеводородной цепочки, а также обращают внимание на насыщенность. Биохимия воды не позволяет ей растворять в себе соединения липидов (жиров). Как правило, такие вещества растворяются в полярных растворах.

Основные задачи липидов заключаются в обеспечении энергией организма. Некоторые входят в состав гормонов, могут выполнять сигнальную функцию или переносить липофильные молекулы.

Молекула углевода

Углеводы – это биополимеры, образованные путем соединения мономеров, которые в данном случае представлены моносахаридами, такими как, например, глюкоза или фруктоза. Изучение биохимии растений позволило человеку определить, что основная часть углеводов содержится именно в них.

Свое применение эти биополимеры находят в структурной функции и предоставлении энергетических ресурсов организму или клетке. У растительных организмов главным запасающим веществом служит крахмал, а у животных – гликоген.

Течение цикла Кребса

Существует в биохимии цикл Кребса – явление, в ходе которого преобладающее количество эукариотических организмов получают большую часть энергии, расходуемой на процессы окисления поглощаемой пищи.

Наблюдать его можно внутри клеточных митохондрий. Образуется посредством нескольких реакций, в ходе которых высвобождаются запасы «спрятанной» энергии.

В биохимии цикл Кребса – это важный фрагмент общего дыхательного процесса и вещественного обмена внутри клеток. Цикл был открыт и изучен Х. Кребсом. За это ученый получил Нобелевскую премию.

Данный процесс также называют системой для переноса электронов. Это связано с сопутствующим переходом АТФ в АДФ. Первое соединение, в свою очередь, занимается обеспечением метаболических реакций при помощи выделения энергии.

Биохимия и медицина

Биохимия медицины представлена нам в виде науки, охватывающей множество областей биологических и химических процессов. В настоящее время существует целая отрасль в образовании, которая готовит специалистов для данных исследований.

Здесь изучают все живое: от бактерии или вируса до человеческого организма. Наличие специальности биохимика дает субъекту возможность следить за постановкой диагноза и анализировать лечение, применимое к индивидуальной единице, делать выводы и т. д.

Чтобы подготовить высококвалифицированного эксперта в этой области, нужно обучить его естественным наукам, медицинским основам и биотехнологическим дисциплинам, проводят множество тестов по биохимии. Также студенту дают возможность практически применять свои знания.

вузы биохимии в настоящее время приобретают все большую популярность, что обуславливается быстрым развитием этой науки, ее важностью для человека, востребованностью и т. д.

Среди самых известных учебных заведений, где готовят специалистов этой отрасли науки, самые популярные и значимые: МГУ им. Ломоносова, ПГПУ им. Белинского, МГУ им. Огарева, Казанский и Красноярский государственные университеты и другие.

Перечень документов, необходимых для поступления в подобные вузы не отличается от списка для зачисления в другие высшие учебные заведения. Биология и химия являются основными предметами, которые необходимо сдавать при поступлении.

www.syl.ru

БИОХИМИЯ - это... Что такое БИОХИМИЯ?

БИОХИМИЯ

биологическая химия, наука о химич. составе живой материи и о химич. процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Б. слагается из статической Б., занимающейся преимущественно анализом химич. состава организмов, динамической Б., изучающей всю совокупность превращений веществ в организме, и функциональной Б., исследующей химич. процессы, лежащие в основе определ. проявлений жизнедеятельности. В зависимости от объекта исследования выделяют Б. человека (в т. ч. медицинскую), Б. животных, Б. растений и Б. микроорганизмов. Как самостоят, наука Б. сложилась на рубеже 19—20 вв., однако изучение проблем, составляющих предмет совр. Б., началось в кон. 18 в. Исторически становление Б. тесно связано с достижениями в области органич. химии, физиологии и медицины. В нач. 19 в. был осуществлён ряд исследований по изучению химич. состава растит, и животных клеток, в 1828 была синтезирована мочевина (Ф. Вёлер). Во 2-й пол. 19 в. были получены данные о структуре аминокислот, углеводов и жиров, установлена природа пептидной связи (Э. Фишер), накоплены нек-рые сведения о составе и. химич. превращениях белков, жиров и углеводов, о процессе брожения (Ю. Либих, Л. Пастер, Э. Бухнер), о фотосинтезе (К. А. Тимирязев), положено начало изучению нуклеиновых к-т (И.Ф.Мишер). Большой вклад в развитие Б. в России внесли М. В. Ненцкий, А. Я. Данилевский, В. С. Гулевич и А. Н. Бах. В кон. 19 в. сформировалось представление о сходстве осн. принципов и механизмов химич. превращений у разл. групп организмов, а также об особенностях их обмена веществ. 1-я пол. 20 в. отмечена рядом открытий в области Б. питания; предложена концепция заболеваний, обусловленных пищевой недостаточностью. Были открыты витамины и гормоны, определена их роль в организме, установлены механизмы брожения и биол. окисления (О. Варбург, Г. Эмбден, О. Мейергоф, Я. О. Парнас, X. Кребс). Классич. работами Дж. Самнера (1926) доказана белковая природа ферментов, что послужило толчком для быстрого развития энзимологии. В 1939 В. А. Энгельгардтом и М. Н. Любимовой установлена ферментативная (аденозинтри-фосфатазная) активность мышечного белка миозина. Keep. 50-х гг.были открыты и охарактеризованы осн. классы веществ, входящих в состав организмов, изучены пути их превращений. Дальнейшее развитие Б. связано с изучением структуры и функции ряда белков, разработкой осн. положений теории ферментативного катализа, установлением принципиальных схем обмена веществ и т. д. Осн. направлениями совр. биохимич. исследований является дальнейшее познание процессов биосинтеза нуклеиновых к-т и белков (в т. ч. генетического значения и роли изменения этих процессов в патологии), изучение особенностей промежуточного обмена, изучение регуляторных механизмов клетки, её ультраструктуры, молекулярных основ процессов морфогенеза, энергетических процессов в клетках, основ мышечного сокращения, механизма действия гормонов и т. д. Б. влияет на развитие мн. областей прикладной биологии (в т. ч. биотехнологии) и в особенности медицины. На основе достижений Б. возникли новые научные направления — молекулярная биология и биоорганическая химия. Совр. Б., молекулярная биология, биоорганическая химия, а также биофизика и микробиология составляют единый комплекс взаимосвязанных и тесно переплетённых между собой наук — физико-химич. биологию, изучающую физич. и химич. основы живой материи.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)

биохи́мия наука, изучающая химический состав живых организмов и химические процессы, лежащие в основе их жизнедеятельности. Исследование веществ органического происхождения, а также таких процессов, как брожение или пищеварение, началось давно, но как самостоятельная наука биохимия сложилась лишь к нач. 20 в. К этому времени были накоплены сведения о строении и биологической роли белков, жиров и углеводов, возникли представления о принципиальном сходстве химических превращений в клетках всех живых существ. Вместе с тем были выяснены характерные особенности обмена веществ у животных, растений и микроорганизмов.
К сер. 20 в. были открыты многие витамины и гормоны, установлены метаболические пути (последовательность реакций синтеза и распада) основных классов природных соединений, изучены реакции, обеспечивающие клетки энергией. Успехи в исследовании ферментов сформировали энзимологию как самостоятельное направление. Открытие в 1950-х гг. исключительной роли нуклеиновых кислот в явлениях наследственности и изменчивости, стремление понять функции биополимеров и других биологически важных молекул в связи с их строением, а также внедрение в биохимию физических методов исследования привели к выделению из биохимии молекулярной биологии.
Результаты, полученные биохимией, широко используются в медицине, в биотехнологии, в пищевой и микробиологической промышленности, в сельском хозяйстве.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

.

dic.academic.ru

Биохимия - это... Что такое Биохимия?

биологическая химия — наука о химическом составе живых систем всех уровней организации, о химических процессах, лежащих в основе их развития и деятельности, происходящих в целостном организме, в изолированных органах и тканях, на клеточном, субклеточном и молекулярном уровнях. Статическая Б. изучает химический состав тканей, динамическая Б. исследует превращения веществ в организме, функциональная Б. нанимается анализом химических процессов, лежащих в основе определенных проявлений жизнедеятельности. В зависимости от объекта исследования выделяют Б. человека (в т.ч. медицинскую биохимию), Б. животных, Б. растений и Б. микроорганизмов. Быстрое развитие Б. и возрастание потребностей в биохимических исследованиях в различных областях науки и хозяйственной деятельности привели к созданию многочисленных отраслей биохимии, в т.ч. технической и промышленной Б. (разрабатывает проблемы рентабельного получения сырья, его обработки и эффективного использования, повышения урожайности культурных растений и др.), Б. гормонов (см. Гормоны), энзимологии (Энзимология), эволюционной и сравнительной Б. (изучает закономерности биохимической эволюции различных организмов). Пограничным разделом биохимии, гигиены питания, фармакологии и некоторых других областей науки является витаминология. На стыке гистологии и биохимии сформировались гистохимия и цитохимия, изучающие локализацию и превращение веществ в клетках и тканях. Развитие исследований, находящихся на грани биохимии и органической химии, привело к созданию биоорганической химии. Самостоятельной областью Б., тесно связанной с биофизикой и физической химией, стала молекулярная биология, одним из ответвлений которой является молекулярная генетика. Современная Б. оказывает существенное влияние на развитие теоретических основ медицины.

Медицинская биохимия изучает механизмы, лежащие в основе процессов жизнедеятельности, протекающих в здоровом организме человека, и особенности их нарушений при патологических состояниях с целью расшифровки биохимических основ патогенеза заболеваний как на молекулярном, так и на более сложном уровне организации живой материи. Она разрабатывает также основы рациональных методов и приемов воздействия на ход определенных биохимических реакций в организме для лечения и предупреждения тех или иных патологических состояний. Важным объектом исследования медицинской Б. являются экспериментальные патологические состояния, моделируемые на лабораторных животных.

Потребности клинической медицины обусловили формирование клинической Б., которая изучает изменения химического состава и обмена веществ в организме человека в динамике течения патологического состояния и их лечения, а также разрабатывает методы биохимического выявления этих изменений в целях диагностики и прогноза эффективности воздействий. Клиническая Б. составляет одну из отраслей лабораторной диагностики. Общая клиническая Б. изучает методологические и методические проблемы исследования нарушений биохимических процессов в организме человека, устанавливает пределы (границы) нормальных величин изучаемых биохимических параметров с учетом условий среды его обитания (климатогеографические, экологические, этнические факторы) и видов трудовой деятельности, выявляет причины ошибок и разрабатывает методы контроля за качеством проведения лабораторно-диагностических биохимических исследований. Частная клиническая Б. исследует особенности расстройств биохимических процессов, а также определяет выбор наиболее информативных методов лабораторно-диагностических биохимических исследований в клиниках внутренних болезней, хирургической, акушерства и гинекологии и др. Клиническая Б. (как и медицинская Б.) особенно тесно связана с фармакологией и патофизиологией.

В биохимии широко применяют электрофорез, различные виды хроматографии (Хроматография), многочисленные физические (главным образом оптические) методы исследования (флюорометрию, спектрофотометрию, масс-спектрометрию, Ядерный магнитный резонанс, электронно-парамагнитный резонанс и др.), полярографию, радиоиммунный и иммуноферментный анализ и др. Важными направлениями развития современной клинической Б. являются переход от качественных тестов к специфическим количественным методам, в т.ч. в экспресс-диагностике (см. Экспресс-методы), от однократного определения уровня того или иного биохимического компонента в биологических жидкостях к динамическому наблюдению за его количественными и качественными изменениями в процессе развития болезни и ее лечения, к функциональным пробам, выявляющим резервы компенсаторных возможностей организма, а также разработка методов выявления скрытых отклонений от нормы, ранних биохимических проявлений заболеваний.

наука, изучающая химическую природу веществ, входящих в состав живых организмов, и химические процессы, лежащие в основе их жизнедеятельности.

Биохи́мия возра́стная — раздел Б., изучающий особенности обменных процессов и химического состава тканей организма в различные возрастные периоды.

Биохи́мия динами́ческая — раздел Б., изучающий обмен веществ в организме от момента поступления в него питательных веществ до образования конечных продуктов обмена, механизмы нейтрализации токсических продуктов, выведения их из организма и регуляции скорости соответствующих превращений.

Биохи́мия клини́ческая — раздел Б., изучающий изменения химического состава и обмена веществ в жидких средах, органах и тканях при различных патологических состояниях организма; методы Б. к. используются для диагностики заболеваний и оценки эффективности их лечения.

Биохи́мия радиацио́нная — раздел Б., изучающий изменения обмена веществ, возникающие в организме в результате действия на него ионизирующих излучений.

Биохи́мия функциона́льная — раздел Б., изучающий химические превращения, лежащие в основе функций органов, тканей и организма в целом.

dic.academic.ru

БИОХИМИЯ - это... Что такое БИОХИМИЯ?

  • биохимия — биохимия …   Орфографический словарь-справочник

  • БИОХИМИЯ — БИОХИМИЯ, наука о химических веществах, входящих в состав организмов, их структуре, распределении, превращениях и функциях, а также о химических процессах, лежащих в основе жизнедеятельности. Первые сведения по биохимии человек получил в процессе …   Современная энциклопедия

  • Биохимия — БИОХИМИЯ, наука о химических веществах, входящих в состав организмов, их структуре, распределении, превращениях и функциях, а также о химических процессах, лежащих в основе жизнедеятельности. Первые сведения по биохимии человек получил в процессе …   Иллюстрированный энциклопедический словарь

  • БИОХИМИЯ — (греч.). Учение об обмене материи в живых телах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БИОХИМИЯ учение об обмене материи в живых существах. Полный словарь иностранных слов, вошедших в употребление в… …   Словарь иностранных слов русского языка

  • БИОХИМИЯ — наука, изучающая состав и химические процессы, происходящие в живых организмах. Биохимия играет существенную роль в познании закономерностей потока энергии и круговорота веществ в экосистемах, их биологической продуктивности, биогеохимических… …   Экологический словарь

  • БИОХИМИЯ — изучает входящие в состав организмов химические вещества, их структуру, распределение, превращения и функции. Первые сведения по биохимии связаны с хозяйственной деятельностью человека (обработка растительного и животного сырья, использование… …   Большой Энциклопедический словарь

  • БИОХИМИЯ — биологическая химия, наука о химич. составе живой материи и о химич. процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Б. слагается из статической Б., занимающейся преимущественно анализом химич. состава… …   Биологический энциклопедический словарь

  • БИОХИМИЯ — БИОХИМИЯ, наука о химии живых организмов. Использует методы органической и физической химии для исследования процессов жизни. Биохимики изучают как структуру и свойства всех компонентов живой материи (ЖИРЫ, БЕЛКИ, энзимы, ГОРМОНЫ, ВИТАМИНЫ, ДНК,… …   Научно-технический энциклопедический словарь

  • биохимия — сущ., кол во синонимов: 3 • биология (73) • нейрохимия (1) • ферментология (2) …   Словарь синонимов

  • биохимия — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN biochemistry …   Справочник технического переводчика

  • биохимия — биологическая химия биол., хим …   Словарь сокращений и аббревиатур

  • dic.academic.ru

    БИОХИМИЯ - это... Что такое БИОХИМИЯ?

    биологическая химия, наука, изучающая химич. состав организмов, структуру, локализацию и функции содержащихся в них соединений, пути и закономерности их образования, последовательность и механизм превращений, а также их биол. и физиол. роль.

    Совр. Б. как самостоятельная наука сложилась на рубеже 19 и 20 вв. До этого времени вопросы, рассматриваемые Б., изучались органич. химией и физиологией. Б. является продуктом развития этих двух наук, и её можно подразделить на статич. Б., изучающую химич. состав организмов, и динамич. Б., исследующую превращения веществ в процессе жизнедеятельности. В зависимости от объектов исследования и задач Б. разделилась на ряд обособленных дисциплин: Б. человека и животных. Б. растений, Б. микроорганизмов, техннч. Б., Б. вирусов, клинич. Б. Возникли самостоятельные области Б.: эволюционная и сравнительная Б., Б, ферментов, витаминов, гормонов, радиационная Б., квантовая Б., биохимич. генетика. На стыках Б. с рядом биол. дисциплин сложилась молекулярная биология. В развитии Б. важную роль сыграла разработка таких методов исследования, как изотопная индикация, спектрофотометрия, масс-спектрометрия, электронный и парамагнитный резонанс, рентгеноструктурный анализ, электронная микроскопия, хроматография, гель-фильтрация, электрофорез, полярография и др. Благодаря этим методам Б. достигла крупных успехов. Выяснена структура белков (напр., инсулина, рибонуклеазы, окситоцина), пространственное строение нек-рых белков (миоглобина, гемоглобина, лизоцима), изучен механизм ферментативного катализа, расшифрован механизм биосинтеза белка при участии нуклеиновых к-т, выяснена структура ДНК и её роль в передаче наследств, информации и др. Продолжаются исследования по изучению обмена белков, аминокислот, углеводов, различных реакций обмена веществ, а также функциональной Б. и др.

    Биохимия с.-х. животных в СССР начала развиваться в первые годы после Окт. революции 1917. В вет. и с.-х. вузах были созданы кафедры Б., позднее в вет. и с.-х. н.-и. ин-тах — биохимич. лаборатории, организованы Всесоюзный н.-и. ин-т физиологии, биохимии и питания с.-х. животных, Укр. н.-и. ин-т физиологии и биохимии с.-х. животных, вет.-биол. ф-т при МВА. Большой вклад в развитие Б, с.-х. животных внесли А. Н. Бах, В. Н. Букин, П. П. Астанин, С. И. Афонский, Н. А. Шманенков и др. Осн. проблемы — установление биохимич. основ ведения жив-ва на пром. основе, дальнейшее изучение биокомплексных соединений организма, имеющих практич, значение в диагностике болезней и селекционно-зоотехнич. работе, изучение механизма нарушений обмена веществ высокопродуктивных животных и др. Во Всесоюзном биохимич. обществе имеется секция Б. с.-х. животных. Науч. работы публикуются в спец. сборниках, в журн. “Ветеринария”, а также в спец. биохимич. журналах.

    Лит.: Углов А. А., Кармолиев Р. X., Плешанов Н. Н., Становление школы ветеринарных биохимиков, “Ветеринария”, 1969, № 11, с. 36-38; Афонский С. И., Биохимия животных, 3 изд., М., 1970; Ленинджер А., Биохимия, пер. с англ., М., 1974.

    Ветеринарный энциклопедический словарь. — М.: "Советская Энциклопедия". Главный редактор В.П. Шишков. 1981.

    veterinary.academic.ru

    БИОХИМИЯ - это... Что такое БИОХИМИЯ?

  • биохимия — биохимия …   Орфографический словарь-справочник

  • БИОХИМИЯ — БИОХИМИЯ, наука о химических веществах, входящих в состав организмов, их структуре, распределении, превращениях и функциях, а также о химических процессах, лежащих в основе жизнедеятельности. Первые сведения по биохимии человек получил в процессе …   Современная энциклопедия

  • Биохимия — БИОХИМИЯ, наука о химических веществах, входящих в состав организмов, их структуре, распределении, превращениях и функциях, а также о химических процессах, лежащих в основе жизнедеятельности. Первые сведения по биохимии человек получил в процессе …   Иллюстрированный энциклопедический словарь

  • БИОХИМИЯ — (греч.). Учение об обмене материи в живых телах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БИОХИМИЯ учение об обмене материи в живых существах. Полный словарь иностранных слов, вошедших в употребление в… …   Словарь иностранных слов русского языка

  • БИОХИМИЯ — наука, изучающая состав и химические процессы, происходящие в живых организмах. Биохимия играет существенную роль в познании закономерностей потока энергии и круговорота веществ в экосистемах, их биологической продуктивности, биогеохимических… …   Экологический словарь

  • БИОХИМИЯ — изучает входящие в состав организмов химические вещества, их структуру, распределение, превращения и функции. Первые сведения по биохимии связаны с хозяйственной деятельностью человека (обработка растительного и животного сырья, использование… …   Большой Энциклопедический словарь

  • БИОХИМИЯ — биологическая химия, наука о химич. составе живой материи и о химич. процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Б. слагается из статической Б., занимающейся преимущественно анализом химич. состава… …   Биологический энциклопедический словарь

  • БИОХИМИЯ — БИОХИМИЯ, наука о химии живых организмов. Использует методы органической и физической химии для исследования процессов жизни. Биохимики изучают как структуру и свойства всех компонентов живой материи (ЖИРЫ, БЕЛКИ, энзимы, ГОРМОНЫ, ВИТАМИНЫ, ДНК,… …   Научно-технический энциклопедический словарь

  • биохимия — сущ., кол во синонимов: 3 • биология (73) • нейрохимия (1) • ферментология (2) …   Словарь синонимов

  • биохимия — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN biochemistry …   Справочник технического переводчика

  • биохимия — биологическая химия биол., хим …   Словарь сокращений и аббревиатур

  • agricultural_dictionary.academic.ru

    БИОХИМИЯ - это... Что такое БИОХИМИЯ?

  • биохимия — биохимия …   Орфографический словарь-справочник

  • БИОХИМИЯ — БИОХИМИЯ, наука о химических веществах, входящих в состав организмов, их структуре, распределении, превращениях и функциях, а также о химических процессах, лежащих в основе жизнедеятельности. Первые сведения по биохимии человек получил в процессе …   Современная энциклопедия

  • Биохимия — БИОХИМИЯ, наука о химических веществах, входящих в состав организмов, их структуре, распределении, превращениях и функциях, а также о химических процессах, лежащих в основе жизнедеятельности. Первые сведения по биохимии человек получил в процессе …   Иллюстрированный энциклопедический словарь

  • БИОХИМИЯ — (греч.). Учение об обмене материи в живых телах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БИОХИМИЯ учение об обмене материи в живых существах. Полный словарь иностранных слов, вошедших в употребление в… …   Словарь иностранных слов русского языка

  • БИОХИМИЯ — изучает входящие в состав организмов химические вещества, их структуру, распределение, превращения и функции. Первые сведения по биохимии связаны с хозяйственной деятельностью человека (обработка растительного и животного сырья, использование… …   Большой Энциклопедический словарь

  • БИОХИМИЯ — биологическая химия, наука о химич. составе живой материи и о химич. процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Б. слагается из статической Б., занимающейся преимущественно анализом химич. состава… …   Биологический энциклопедический словарь

  • БИОХИМИЯ — БИОХИМИЯ, наука о химии живых организмов. Использует методы органической и физической химии для исследования процессов жизни. Биохимики изучают как структуру и свойства всех компонентов живой материи (ЖИРЫ, БЕЛКИ, энзимы, ГОРМОНЫ, ВИТАМИНЫ, ДНК,… …   Научно-технический энциклопедический словарь

  • биохимия — сущ., кол во синонимов: 3 • биология (73) • нейрохимия (1) • ферментология (2) …   Словарь синонимов

  • биохимия — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN biochemistry …   Справочник технического переводчика

  • биохимия — биологическая химия биол., хим …   Словарь сокращений и аббревиатур

  • dic.academic.ru


    Смотрите также