Какие вещества образуют основу клеточной мембраны


Клеточные мембраны » mozok.click

Повторите материал предыдущей темы и объясните, какие органические вещества составляют основу биологических мембран. вспомните, какие свойства присущи липидам. Каких липидов в клеточных мембранах больше всего?

Клеточные мембраны

Клеточные мембраны — это структуры, которые окружают клетку и формируют внутри нее ряд органелл. Это так называемые мембранные органеллы — ядро, митохондрии, вакуоли и др. Мембраны образованы двумя слоями липидов, в которых расположены молекулы белков. Белки и липиды мембран нередко присоединяют к себе молекулы углеводов, образуя гликопротеиды и гликолипиды (рис. 10.1). Так как липидные слои, образующие мембрану, жидкообразны и текучи, то погруженные в них белки довольно подвижны. Поэтому модель, которая описывает строение мембраны, называют жидкостно-мозаичной.

Функции мембран

Важнейшими функциями биологических мембран являются барьерная, рецепторная и транспортная. Мембраны являются барьерами с избирательной проницаемостью. Они регулируют обмен веществ между клеткой и окружающей средой, а также между отдельными компонентами внутри клетки. Барьерные функции мембран выполняют липиды. Именно они образуют основу биологической мембраны.

Рецепторную функцию выполняет надмембранный комплекс. Это, главным образом, гликопротеиды, которые образуют структуры, расположенные на поверхности мембраны.

Мембраны играют важную роль в обмене веществ между клеткой и окружающей средой и обеспечивают межклеточные взаимодействия. Именно они передают сигналы из внешней среды клеток во внутреннюю.

Мембраны выполняют также структурную, защитную и ферментативную функции. Они придают клеткам определенную форму, защищают их от повреждений и объединяют отдельные клетки тканей в единое целое. Ферменты, которые располагаются на поверхности мембран, обеспечивают выполнение ферментативной функции. Например, при пищеварении в кишечнике человека.



Транспорт веществ через мембраны

Транспортная функция мембран чрезвычайно важна для жизнедеятельности клетки. Наибольшую роль в ее выполнении играют белки. Они могут формировать в мембране сквозные каналы или транспортировать некоторые вещества в связанном виде, образуя с ними временные соединения.

Перенос веществ через мембрану может происходить либо без затрат энергии (пассивный транспорт), либо с затратами (активный транспорт). Пассивный транспорт осуществляется из зоны с высокой концентрацией вещества в зону с его низкой концентрацией. А активный транспорт, наоборот, — из зоны с низкой концентрацией в зону с высокой концентрацией.

Через мембрану транспортируются как большие, так и малые молекулы веществ. Перемещение малых молекул происходит с помощью простой диффузии, облегченной диффузии, активного транспорта, а больших — путем экто- и эндоцитоза.

Пасивний транспорт

Путем простой диффузии происходит только пассивный транспорт веществ (кислород, углекислый газ). А путем облегченной диффузии может осуществляться как пассивный, так и активный виды транспорта. Облегченная диффузия происходит через специальные

каналы, расположенные внутри больших белковых молекул. Ее могут выполнять также специальные белки-переносчики. Так транспортируются малые органические молекулы (глюкоза, некоторые аминокислоты и др.).

Очень важным для клеток является транспорт молекул воды через мембраны. Его особенностью является то, что необходимо переносить через мембрану только молекулы воды, препятствуя переносу растворенных в ней веществ. Этот процесс осуществляют специальные мембранные белки аквапорины (рис. 10.2).


Активный транспорт

Активный транспорт через клеточную мембрану осуществляется с помощью специальных белковых комплексов, а также путем экзо-или эндоцитоза. Так перемещаются ионы и большие молекулы, для которых мембрана является непроницаемой.

Мембранный транспорт в клетку называется эндоцитоз. Мембранный транспорт из клетки — экзоцитоз (рис. 10.3). Транспорт твердых частиц — это фагоцитоз, а транспорт жидкостей и капель — пиноцитоз.

Примером активного транспорта веществ через мембрану клетки является работа натрий-калиевого насоса. Клетке для нормального функционирования необходимо поддерживать определенное соотношение ионов Na+ и K+ — в цитоплазме и внеклеточной среде.

Перенос ионов Na+ и K+ осуществляется белком, который расположен в клеточной мембране. Этот белок перекачивает ионы Na+ из клетки, а ионы K+ — в клетку. Перенос этих ионов происходит из области их низкой концентрации в область их высокой концентрации (ионов K+ больше в клетке, а ионов Na+ — вне клетки). Для этого процесса используется энергия молекул АТФ.

За один цикл работы насос выкачивает из клетки 3Na+ и закачивает 2K+ (рис. 10.4). 

Поэтому на внешней стороне мембраны накапливается избыток положительных ионов. Это создает разность потенциалов между внешней и внутренней поверхностями мембраны. Эту разность используют как источник энергии многие другие белковые комплексы для переноса различных веществ через мембрану.


Клеточные мембраны — это структуры, которые окружают клетку и формируют внутри нее ряд органелл. в их состав входят липиды, белки и углеводы. Липиды образуют двойной слой. в каждом из слоев гидрофильные части липидных молекул ориентированы наружу, а гидрофобные — внутрь. Белковые комплексы в составе мембраны могут пронизывать ее насквозь, размещаться в пределах одного липидного слоя или даже снаружи мембраны. Состав внешнего и внутреннего липидных слоев может различаться. Основными функциями мембран являются барьерная, транспортная и рецепторная.

Проверьте свои знания

1. Что такое мембрана? Какие объекты она окружает? 2. Каково строение клеточной мембраны? 3. Какие вещества входят в состав мембран? 4. Какие функции выполняют клеточные мембраны? 5. Почему некоторые вещества не могут проникать через мембрану путем простой диффузии? 6*. Какие свойства фосфолипидов привели к тому, что они стали основой клеточных мембран? 7*. Почему для разных веществ используются различные механизмы транспорта через мембрану клетки?

 

Это материал учебника Биология 9 класс Задорожный

 

mozok.click

Клеточная мембрана — Википедия

У этого термина существуют и другие значения, см. Мембрана. Модель клеточной мембраны. Маленькие голубые и белые шарики — гидрофильные «головки» фосфолипидов, а присоединённые к ним линии — гидрофобные «хвосты». На рисунке показаны только интегральные мембранные белки (красные глобулы и жёлтые спирали). Жёлтые овальные точки внутри мембраны — молекулы холестерина. Жёлто-зелёные цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

История исследования

В 1925 году Гортер и Грендель с помощью осмотического удара получили так называемые «тени» эритроцитов — их пустые оболочки. Тени сложили в стопку и определили площадь их поверхности. Затем с помощью ацетона выделили из оболочек липиды и определили количество липидов на единицу площади эритроцита — этого количества хватило на сплошной двойной слой. Хотя этот эксперимент привёл исследователей к правильному выводу, ими было допущено несколько грубых ошибок — во-первых, с помощью ацетона нельзя выделить абсолютно все липиды, а во-вторых, площадь поверхности была определена неправильно, по сухому весу. В данном случае минус на минус дал плюс, соотношение определяемых показателей случайно оказалось верным и был открыт липидный бислой.

Эксперименты с искусственными билипидными пленками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. То есть в них содержится что-то, что снижает натяжение — белки. В 1935 году Даниэлли и Доусон представили научному сообществу модель «сендвича», которая говорит о том, что в основе мембраны лежит липидный бислой, по обеим сторонам от которого находятся сплошные слои белков, внутри бислоя ничего нет. Первые электронно-микроскопические исследования 1950-х годов подтвердили эту теорию — на микрофотографиях были видны 2 электронно-плотных слоя — белковые молекулы и головки липидов и один электронно-прозрачный слой между ними — хвосты липидов. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трёхслойное строение всех клеточных мембран.

Но постепенно накапливались аргументы против «бутербродной модели»:

  • накапливались сведения о глобулярности плазматической мембраны;
  • оказалось, что структура мембраны при электронной микроскопии зависит от способа её фиксации;
  • плазматическая мембрана может различаться по структуре даже в одной клетке, например в головке, шейке и хвосте сперматозоида;
  • «бутербродная» модель термодинамически не выгодна — для поддержания такой структуры нужно затрачивать большое количество энергии, и протащить вещество через мембрану очень сложно;
  • количество белков, связанных с мембраной электростатически, очень небольшое, в основном белки очень тяжело выделить из мембраны, так как они погружены в неё.

Всё это привело к созданию в 1972 году С. Д. Сингером (S. Jonathan Singer) и Г. Л. Николсоном (Garth L. Nicolson) жидкостно-мозаичной модели строения мембраны. Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Периферические белки действительно находятся на поверхности мембраны и связаны с полярными головками мембранных липидов электростатичесткими взаимодействиями, но никогда не образуют сплошной слой. Доказательствами жидкостности мембраны служат методы FRAP, FLIP и соматическая гибридизация клеток, мозаичности — метод замораживания-скалывания, при котором на сколе мембраны видны бугорки и ямки, так как белки не расщепляются, а целиком отходят в один из слоёв мембраны.

Функции

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой[1]. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки[1]. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
  • Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • Осуществление генерации и проведения биопотенциалов.
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.

Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

См. также

Примечания

  1. 1 2 Твердислов В. А., Яковенко Л. В. Физика биологических мембран // Школьникам о современной физике. Акустика. Теория относительности. Биофизика. - М., Просвещение, 1990. -ISBN 5-09-001323-3. - Тираж 200 000 экз. - С. 131-158

Литература

  • Антонов В. Ф., Смирнова Е. Н., Шевченко Е. В. Липидные мембраны при фазовых переходах. — М.: Наука, 1994.
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — М.: Мир, 1997. — ISBN 5-03-002419-0.
  • Иванов В. Г., Берестовский Т. Н. Липидный бислой биологических мембран. — М.: Наука, 1982.
  • Рубин А. Б. Биофизика, учебник в 2 тт. — 3-е издание, исправленное и дополненное. — М.: издательство Московского университета, 2004. — ISBN 5-211-06109-8.
  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1. — учебник по молекулярной биологии на английском языке

Ссылки

wikipedia.green

«Какие липиды входят в состав клеточной мембраны?» – Яндекс.Кью

Коллаген – это белок, а гликоген – полисахарид.

Коллаген представляет собой фибриллярный, вытянутый, белок, каждая молекула представляет собой левозакрученную спираль из трёх переплетающихся полипептидных цепочек. В цепочках много гидроксилированных аминокислот, благодаря которым цепочки взаимодействуют между собой. Витамин C нужен, в первую очередь, для гидроксилирования аминокислот, недостаток витамина C ведёт к проблемам с соединительной тканью, в частности, к цинге. Каждая третья аминокислота в цепочках спирали – глицин, у которого боковая группа представлена лишь одним протоном. Глицин обеспечивает компактность структуры молекулы коллагена. В реальном коллагене тройные спирали располагаются строго определённым образом относительно друг друга, образуя структуры более высокого порядка – фибриллы, обладающие свойством механической прочности. В частности, это позволяет костям не ломаться и выполнять опорную функцию. Вообще говоря, коллаген – самый распространённый белок млекопитающих, он составляет порядка четверти всей нашей белковой массы. Известно около 30 классов коллагена, которые распределены по разным тканям.

Гликоген – это не белок, а полисахарид, а именно полимер глюкозы. Главная его функция – запасающая (глюкоза – источник энергии). В структуре молекулы гликогена можно увидеть, что линейные области цепочки иногда прерываются развилками. Это обеспечивается специальным ферментом, который действует на стадии образования этого полисахарида. Гликоген у нас есть в печени и мышцах. Правда, запасов печёночного гликогена хватает примерно на один день, эти резервы надо постоянно пополнять.

yandex.ru

Помогите с тестом по биологии за 10 класс

1.Наука, изучающая строение и жизнедеятельность кле¬ток, — ...цитология 2.Минимальный размер объекта, видимый в микроскоп, — ...микрон для светового 3.Живое содержимое клеток эукариот, состоящее из ядра и цитоплазмы с органоидами, — ...протопласт 4.Все содержимое клетки, за исключением ее ядра, — ...цитоплазма 7.Избирательно проницаемый барьер клетки, состоящий из двойного слоя фосфолипидов и белков, — ...мембрана 8.Наружный слой клеток животных и бактерий, состоящий из полисахаридов и белков и выполняющий главным об¬разом защитную функцию, — ...оболочка, гликокаликс 9.Транспорт, связанный с потреблением энергии молекул или ионов через мембрану клетки против градиента кон¬центрации, — ...активный 10. Процесс активного захватывания и поглощения клеточ¬ной мембраной твердых частиц — ...фагоцитоз 11. Процесс поглощения клеточной мембраной жидкости — ...пиноцитоз 12. Процесс выведения через клеточную мембрану непереварен-ных частиц, жидких секретов и продуктов выделения — ...экзоцитоз 13. Пористая структура из целлюлозы, гемицеллюлозы и пек-тиновых веществ, придающая клетке прочность и посто¬янную форму, — ...оболочка, клетчатка 15. Система мембран и каналов, пронизывающих цитоплазму клеток эукариот, — ...ЭПС 16. Самые маленькие по размеру клеточные органеллы, со-стоящие из двух субчастиц: малой и большой, — ...рибосомы 17. Стопки мембранных мешочков, цистерн и связанных с ними мембранных пузырьков, в которых синтезируются и упаковываются необходимые клетке вещества, — ...аппарат гольджи 18. Одномембранные сферические пузырьки, заполненные гидролитическими ферментами, — ...лизосомы 19. Процесс, посредством которого клетка уничтожает ненуж¬ные ей структуры, — ...лизис 20. Саморазрушение клетки, наступающее в результате высвобождения содержимого ее лизосом, — ...генетически запрограммированная смерть клетки 21. Двухмембранные органеллы клетки, в которых идет за¬пасание энергии в виде молекул АТФ, — ...митохондрии 22. Складки внутренней мембраны митохондрий, увеличива¬ющие площадь их внутренней поверхности, — ...кристы 23. Основное тонкозернистое вещество, заполняющее проме¬жутки между складками внутренней мембраны митохонд¬рий, — ...матрикс 25. Система внутренних мембран хлоропластов, собранных в стопки и заполненных пигментами, — ...граны хлоропластов 26. Студенистое вещество, расположенное в промежутках меж¬ду внутренними мембранами хлоропластов, — ...строма 27. Полые цилиндры, состоящие из микротрубочек и прини¬мающие активное участие в клеточном делении, — ...клеточный центр 28. Самая крупная органелла клетки, заключенная в оболоч¬ку из двух мембран, пронизанную порами, — ...я знаю 2 двухмембранные органеллы = митохондрии и хлоропласты 29. Нуклеопротеиновые нити, образующие органоиды клеточ¬ного ядра, название которых в переводе с греческого оз¬начает «окрашенный материал» , — ...хромосомы = окрашивающиеся тельца 31. Гелеобразное содержимое ядра, в котором расположены хроматин, одно или несколько ядрышек, — ...ядерный сок 32. Находящаяся внутри ядра округлая структура, в которой протекает синтез рРНК, — ..ядрыщко. 34. Выступающие на поверхности клетки органеллы, состоя¬щие из микротрубочек, — ...жгутики и реснички? 38. Неклеточная форма жизни, способная проникать в живую клетку и размножаться внутри нее, — ...вирус 39. Вирусы, поражающие бактериальные клетки, — ...фаги

помогите или решите за меня ???

touch.otvet.mail.ru


Смотрите также