Модели строения мембран


Строение и модели мембран — Студопедия

Физические процессы в биологических мембранах

Физические вопросы строения и функционирования мембран. Транспорт веществ через мембраны. Пассивный транспорт. Простая и об­легченная диффузия. Математическое описание пассивного транспорта.

Активный транспорт ионов. Механизм активного транспорта на при­мере натрий-калиевого насоса.

Биологические мембраны являются важной частью клетки. Они ограничивают клетку от окружающей среды, защищают ее от вредных внешних воздействий, управляют обменом веществ между клеткой и ее окружением, способствуют генерации электрических потенциалов, участвуют в синтезе универсального аккумулятора энергии — аденозинтрифосфорной кислоты (АТф) в митохондриях и т. д. По существу, мембраны формируют структуру клетки и осуществляют ее функции. Нарушение функций клеточной и внутриклеточной мембран лежит в осно­ве необратимого повреждения клеток и, как следствие, развития тяжелых заболеваний сердечно-сосудистой, нервной, эн­докринной систем и пр. В главе рассматриваются физические свойства биологических мембран и основные физические процессы, которые в них происходят.

Все клетки окружены мембранами (цитоплазматическими, или наружными клеточными мембранами). Без мембраны содержимое клетки просто бы «растеклось», диффузия привела бы к термоди­намическому равновесию, что означает отсутствие жизни. Можно сказать, что первая клетка появилась тогда, когда она смогла отделиться от окружающей среды мембраной. Внутриклеточные мембраны подразделяют клетку на ряд замкнутых отсеков (компартаментов), каждый из них выполняет определенную функцию.


Несмотря на разнообразие биологических функций и форм, все мембраны построены в основном из липидов и белков. Другие соединения, встречающиеся в мембране (например, углеводы), химически связаны с липидами, либо с белками. Липидная молекула состоит из двух частей: несущей электрические заряды (полярной) головки, на которую приходится, как правило, четверть длины всей молекулы (рис. 11.1), и длинных хвостов, не несу­щих электрического заряда (гидрофобных). Хвосты липидной молекулы — это длинные цепи, построенные из атомов углерода и водорода (остатки жирных кислот). Головки могут иметь разнообразное строение, однако они заряжены либо отрицательно, либо нейтральны. Связующим звеном между хвостом и головкой чаще всего служит остаток глицерина.


Набор мембранных белков, выполняющих специализированные функции, различается в цитоплазматических мембранах и мембранах внутриклеточных структур. В то же время любая мембрана своей структурной основой имеет липидный бислой, состоящий из двух мономолекулярных пленок липидов, обращенных друг к другу гидрофобными хвостами и контактирующих с окружающей средой полярными головками (рис. 11.2). Во всех мембранах бислой выполняет две основные функции: матричную и барьерную. С одной стороны, бислой является структурной основой для размещения основных рецепторных и ферментных систем клетки, с другой стороны, двойной слой липидов является преградой для ионов и водорастворимых молекул.

Первая попытка представить молекулярную организацию биологической мембраны принадлежит Даниели и Давсону, которые в 1935 г. предложили модель клеточной мембраны. Согласно этой модели, липиды располагались в два слоя (см. рис. 11.2), а поверхность липидов с обеих сторон покрывали белки. По мере приобретения новых знаний о химическом составе и физических свойствах мембран эволюционировали и представления об их организации. В настоящее время наибольшее распространение имеет предложенная в 1972 г. Синджером и Николсоном жидко-мозаичная модель, в основе которой лежит все та же липидная бислойная мембрана.

Эта липидная основа представляет собой как бы двумерный растворитель, в котором плавают более или менее погруженные белки. За счет этих белков полностью или частично осуществляются специфические функции мембран — проница­емость, активный перенос через мембрану, генерация электрического потенциала и т. д. Схематично жидко-мозаичная структура мембраны показана на рис. 11.3. Здесь 1 — поверхностные белки, 2 — полупогруженные белки, 3 — полностью погруженные (ин­тегральные) белки, 4 — белки, формирующие «ионный канал» 5.

В целом, мембрана является динамичной структурой. Липиды могут перемещаться в плоскости мембраны (латеральная диффузия), а также переходить из одного монослоя в другой (флип-флоп переходы). При этом перемещение липидов в пределах одного мо­номолекулярного слоя происходит почти в 10 млрд раз чаще, чем флип-флоп переход. Белки также могут перемещаться в плоскости мембраны.

Уточнение строения биологических мембран и изучение их свойств оказалось возможным при использовании физико-химических моделей мембраны (искусственные мембраны). Наибольшее распространение получили три модели.

Рассмотрим первую модель — монослой липидов на границе раздела вода — воздух или вода — масло. На таких границах молекулы липидов расположены так, что гидрофильные головки находятся в воде, а гидрофобные хвосты — в воздухе или в масле (рис. 11.4). Если постепенно уменьшать площадь, занимаемую монослоем, в конце концов удастся получить монослой, в котором молекулы расположены так же плотно, как и в одном из монослоев мембраны. При изменении состояния липидных молекул (под действием температуры, взаимодействия липидов с различными лекарственными препа­ратами и пр.) меняется площадь, занимаемая молекулами. Поэтому в биологических и медицинских исследованиях широко используются монослои синтетических липидов, изолированных из различных природных мембран.

Вторая широко использующаяся модель — бислойная липид-ная мембрана (БЛМ). Впервые такая модельная мембрана была создана в 1962 г. П. Мюллером с сотрудниками. Они заполнили отверстие в тефлоновой перегородке, разделяющей два водных раствора, фосфолипидом, растворенным в гептане (рис. 11.5, а). После того как растворитель и излишки липида растекаются по тефлону, в отверстии образуется бислой толщиной несколько на­нометров и диаметром около 1 мм (рис. 11.5, б). Расположив по обе стороны мембраны два электрода, можно измерить сопротив­ление мембраны или генерируемый на ней потенциал. Если по разные стороны перегородки поместить различные по химическо­му составу растворы, то можно изучать проницаемость мембраны для различных агентов, в том числе лекарственных препаратов.

Третьей известной моделью биологической мембраны являются липосомы. Они представляют собой мельчайшие пузырьки (ве­зикулы), состоящие из билипидной мембраны и полученные обра­боткой ультразвуком смеси воды и фосфолипидов. Липосомы фактически являются биологической мембраной, полностью ли­шенной белковых молекул. Схематически липосомы изображены на рис. 11.6

Если липосомы приготовить в среде с каким-либо веществом, а затем удалить это вещество из внешней среды, то можно исследовать скорость выхода этого вещества из липосом данного липидного состава. На липосомах часто проводятся эксперименты по изучению влияния различных факторов, например состава фосфолипидов, на свойства мембраны или, наоборот, влияния мемб­ранного окружения на свойства встраиваемых белков. В медицине липосомы используют для доставки лекарственных веществ в определенные органы и ткани, приготавливая их в среде, содержащей нужное вещество. Липосомы не токсичны, полностью ус­ваиваются в организме и являются надежной липидной микрокапсулой для направленной доставки лекарства.

studopedia.ru

Современная модель клеточной мембраны. — Студопедия

БУТЕРБРОДНАЯ МОДЕЛЬ (белки – липиды – белки)
В 1935г. английские ученые Даниэли и Даусон высказали идею о послойном расположении в мембране молекул белков (темные слои в электронном микроскопе), которые залегают снаружи, и молекул липидов (светлый слой) – внутри. Длительное время существовало представление о едином трехслойном строении всех биологических мембран.
При детальном изучении мембраны с помощью электронного микроскопа оказалось, что светлый слой на самом деле представлен двумя слоями фосфолипидов – это билипидный слой, причем водорастворимые его участки – гидрофильные головки направлены к белковому слою, а нерастворимые (остатки жирных кислот) – гидрофобные хвосты обращены друг к другу.

 

 

Однако уже с середины 60-х годов начали накапливаться факты против унитарной «бутербродной» модели. В частности, по одним данным, не все мембраны имели четкую трехслойную структуру при электронно-микроскопическом исследовании; по другим – значительная часть мембранных белков имела глобулярную структуру, а не ламеллярную, как в постулируемой модели. Наконец, среди многочисленных моделей мембран, предложенных в середине 60-х годов, начали выделяться те, в которых доказывалось наличие гидрофобно-гидрофильных взаимодействий не только между липидными молекулами, но и между липидами и белками.

ЖИДКОСТНО-МОЗАИЧНАЯ МОДЕЛЬ
В 1972г. Сингер и Николсон описали модель мембраны, которая получила широкое признание. Согласно этой модели молекулы белков не образуют сплошного слоя, а погружены в биполярный липидный слой на разную глубину в виде мозаики. Глобулы белковых молекул, подобно айсбергам, погружены в «океан»


 

 

липидов: одни находятся на поверхности билипидного слоя – периферические белки, другие погружаются в него наполовину – полуинтегральные белки, третьи – интегральные белки – пронизывают его насквозь, формируя гидрофильные поры. Периферические белки, находясь на поверхности билипидного слоя, связаны с головками липидных молекул электростатическими взаимодействиями. Но они никогда не образуют сплошного слоя и, по сути дела, не являются белками собственно мембраны, а, скорее, связывают ее с надмембранной или субмембранной системой поверхностного аппарата клетки.
Основную роль в организации собственно мембраны играют интегральные и полуинтегральные (трансмембранные) белки, имеющие глобулярную структуру и связанные с липидной фазой гидрофильно-гидрофобными взаимодействиями. Молекулы белков, как и липиды, обладают амфипатричностью и своими гидрофобными участками взаимодействуют с гидрофобными хвостами билипидного слоя, а гидрофильные участки обращены к водной среде и образуют с водой водородные связи.


БЕЛКОВО-КРИСТАЛЛИЧЕСКАЯ МОДЕЛЬ (модель липопротеинового коврика)
Мембраны образованы переплетением липидных и белковых молекул, объединяющихся между собой на основе гидрофильно-
гидрофобных взаимодействий.

 

 

Белковые молекулы, как штифты, пронизывают слой липидов и выполняют в составе мембраны функцию каркаса. После обработки мембраны жирорастворимыми веществами белковый каркас сохраняется, что доказывает взаимосвязь между молекулами белков в мембране. По-видимому, эта модель реализуется лишь в отдельных специальных участках некоторых мембран, где требуется жесткая структура и тесные стабильные взаимоотношения между липидами и белками (например, в области расположения фермента Na-К –АТФ-азы).
Самой универсальной моделью, отвечающей термодинамическим принципам (принципам гидрофильно-гидрофобных взаимодействий), морфо-биохимическим и экспериментально-цитологическим данным, является жидкостно-мозаичная модель. Однако все три модели мембран не исключают друг друга и могут встречаться в разных участках одной и той же мембраны в зависимости от функциональных особенностей данного участка.

Функции мембран.

Функции

  • барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемостьозначает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
  • матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

studopedia.ru

Строение и модели мембран — Мегаобучалка

Все клетки окружены мембранами (цитоплазматическими, или наружными клеточными мембранами). Без мембраны содержимое клетки просто бы «растеклось», диффузия привела бы к термоди­намическому равновесию, что означает отсутствие жизни. Можно сказать, что первая клетка появилась тогда, когда она смогла отделиться от окружающей среды мембраной. Внутриклеточные мембраны подразделяют клетку на ряд замкнутых отсеков (компартаментов), каждый из них выполняет определенную функцию. ( Несмотря на разнообразие биологических функций и форм, все мембраны построены в основном из липидов и белков. Другие со­единения, встречающиеся в мембране (например, углеводы), хи­мически связаны с липидами, либо с белками. Липидная молеку­ла состоит из двух частей несущей электрические заряды (поляр­ной) головки, на которую приходится, как правило, четверть длины всей молекулы (рис. 11.1), и длинных хвостов, не несу­щих электрического заряда (гидрофобных). Хвосты липидной мо­лекулы — это длинные цепи, построенные из атомов углерода и водорода (остатки жирных кислот). Головки могут иметь разнооб­разное строение, однако они заряжены либо отрицательно, либо нейтральны. Связующим звеном между хвостом и головкой чаще всего служит остаток глицерина.

Набор мембранных белков, выполняющих специализирован­ные функции, различается в цитоплазматических мембранах и мембранах внутриклеточных структур. В то же время любая мембрана своей структурной основой имеет липидный бислой, состоящий из двух мономолекулярных пленок липидов, обращенных друг к другу гидрофобными хвостами и контактирующих с окружающей средой полярными головками (рис. 11.2). Во всех мембранах бислой выполняет две основные функции матрич­ную и барьерную. С одной стороны, бислой является структурной, основой для размещения основных рецепторных и ферментных систем клетки, с другой стороны, двойной слой липидов является преградой для ионов и водорастворимых молекул.


 
 

Первая попытка представить молекулярную организацию био­логической мембраны принадлежит Даниели и Давсону, которые в 1935 г. предложили модель клеточной мембраны.

 

Согласно этой модели, липиды располагались в два слоя (см. рис. 11.2), а по­верхность липидов с обеих сторон покрывали белки. По мере при­обретения новых знаний о химическом составе и физических свойствах мембран эволюционировали и представления об их ор­ганизации. В настоящее время наибольшее распространение име­ет предложенная в 1972 г. Синджером и Николсоном жидко-моза­ичная модель, в основе которой лежит все та же липидная бислойная мембрана. Эта липидная основа представляет собой как бы двумерный растворитель, в котором плавают более или менее по­груженные белки. За счет этих белков полностью или частично осуществляются специфические функции мембран — проница­емость, активный перенос через мембрану, генерация электриче­ского потенциала и т. д. Схематично жидко-мозаичная структура мембраны показана на рис. 11.3. Здесь 1 — поверхностные белки, 2 — полупогруженные белки, 3 — полностью погруженные (ин­тегральные) белки, 4 — белки, формирующие «ионный канал» 5.

В целом, мембрана является динамичной структурой. Липиды могут перемещаться в плоскости мембраны {латеральная диффу­зия), а также переходить из одного монослоя в другой (флип-флоп переходы). При этом перемещение липидов в пределах одного мо­номолекулярного слоя происходит почти в 10 млрд раз чаще, чем флип-флоп переход. Белки также могут перемещаться в плоскос­ти мембраны.

Уточнение строения биологических мембран и изучение их свойств оказалось возможным при использовании физико-хими­ческих моделей мембраны (искусственные мембраны). Наиболь­шее распространение получили три модели.

Рассмотрим первую модель — монослой липидов на границе раз­дела вода — воздух или вода — масло. На таких границах молекулы липидов расположены так, что гидрофильные

 
 

головки находятся в воде, а гидрофобные хвосты — в воздухе или в масле (рис. 11.4).

 

Если постепенно уменьшать площадь, занимаемую монослоем, в кон­це концов удастся получить монослой, в котором молекулы распо­ложены так же плотно, как и в одном из монослоев мембраны. При изменении состояния липидных молекул (под действием температу­ры, взаимодействия липидов с различными лекарственными препа­ратами и пр.) меняется площадь, занимаемая молекулами. Поэтому в биологических и медицинских исследованиях широко использу­ются монослои синтетических липидов, изолированных из различ­ных природных мембран.

Вторая широко использующаяся модель — бислойная липид­ная мембрана (БЛМ). Впервые такая модельная мембрана была создана в 1962 г. П. Мюллером с сотрудниками. Они заполнили отверстие в тефлоновой перегородке, разделяющей два водных раствора, фосфолипидом, растворенным в гептане (рис. 11.5, а). После того как растворитель и излишки липида растекаются по тефлону, в отверстии образуется бислой толщиной несколько на­нометров и диаметром около 1 мм (рис. 11.5, б). Расположив по обе стороны мембраны два электрода, можно измерить сопротив­ление мембраны или генерируемый на ней потенциал. Если по разные стороны перегородки поместить различные по химическо­му составу растворы, то можно изучать проницаемость мембраны для различных агентов, в том числе лекарственных препаратов.

Третьей известной моделью биологической мембраны являют­ся липосомы. Они представляют собой мельчайшие пузырьки (ве­зикулы), состоящие из билипидной мембраны и полученные обра­боткой ультразвуком смеси воды и фосфолипидов. Липосомы фактически являются биологической мембраной, полностью ли­шенной белковых молекул.

Схематически липосомы изображены на рис. 11.6.

 

Если липосомы приготовить в среде с каким-либо веществом, а закем удалить это вещество из внешней среды, то можно исследо­вать скорость выхода этого вещества из липосом данного липид-ного состава. На липосомах часто проводятся эксперименты по изучению влияния различных факторов, например состава фос-фолипидов, на свойства мембраны или, наоборот, влияния мемб­ранного окружения на свойства встраиваемых белков. В медици­не липосомы используют для доставки лекарственных веществ в определенные органы и ткани, приготавливая их в среде, содер­жащей нужное вещество. Липосомы не токсичны, полностью ус­ваиваются в организме и являются надежной липидной микро­капсулой для направленной доставки лекарства.

megaobuchalka.ru

Эволюция представлений о строении мембран

⇐ ПредыдущаяСтр 6 из 8Следующая ⇒

Наличие мембран вокруг живых клеток было установлено более ста лет назад в работах Негели К., который в 1855 г. обнаружил, что неповрежденные клетки могут изменять свой объем при изменении осмотического давления окружающей среды. Эти исследования были продолжены Овертоном Е., показавшим, что неполярные молекулы легче проходят через клеточную мембрану, чем полярные соединения.

На основе этих наблюдений он впервые высказал предположение, что клеточная мембрана имеет липидную природу. Развитие идей о структуре мембран существенно продвинулось благодаря работам Гортера Е. и Грендела Ф., проведенным в 1925 г. Эти авторы впервые выдвинули концепцию липидного бислоя. Идея возникла на основе простого эксперимента. Липиды эритроцитов экстрагировали ацетоном и затем получали из них тонкую пленку на поверхности воды.
С помощью поплавка сжимали слой липидных молекул на границе раздела вода–воздух до тех пор, пока этот слой не начинал оказывать сопротивление дальнейшему сжатию; это явление было объяснено образованием плотно упакованной мономолекулярной липидной пленки. Измерение площади, занимаемой липидами, и сравнение ее с площадью поверхности эритроцитов, из которых эти липиды были экстрагированы, дали соотношение 2:1. Отсюда был сделан вывод, что мембрана эритроцитов состоит из липидных молекул, расположенных в два слоя. По-видимому, этот вывод Гортера Е. и Грендела Ф. оказался правильным только благодаря взаимной компенсации ошибок (во-первых, экстракция ацетоном извлекает не все липиды, во-вторых, они дали заниженную оценку площади поверхности эритроцитов, использовав для ее определения высушенные клетки). Однако в историческом плане эта работа имела большое значение, поскольку концепция липидного бислоя как структурной основы биологических мембран на самом деле оказалась верной. Мысль о том, что с мембранами связаны белки, высказана десятью годами позже Даниелли Дж. в связи с необходимостью объяснить явное расхождение между поверхностным натяжением на границах раздела масло–вода и мембрана–вода. Была высказана гипотеза, что мембрана состоит из двойного липидного слоя, и предположено, что белок располагается на ее поверхности – модель Даниелли–Дэвисона, или модель «сэндвича» (рисунок 1.2).

 

1 – углеводородные гидрофобные цепочки; 2 – полярные
гидрофильные группы молекулы; 3 – полярные поры, по которым
вещества диффундируют в клетку

 

Рисунок 1.2 – Модель строения биологических мембран
Даниелли–Девисона

 

На рисунке 1.2 показан бимолекулярный липидный слой, окруженный с двух сторон монослоями белка. Это была очень удачная
модель, и в течение последующих 30 лет многочисленные экспериментальные данные, особенно полученные с помощью дифракции рентгеновских лучей и электронной микроскопии, полностью подтвердили
ее адекватность. Основными компонентами биологической мембраны являются липид и белок, вопрос о взаимном расположении этих
компонентов в мембране стал предметом многочисленных дискуссий, так как обнаружилось, что мембраны выполняют разнообразные функции.

В 1959 г. Робертсон Дж. Д. предположил, что все клеточные мембраны построены по единому принципу, и высказал концепцию унитарной (или единообразной) мембраны (рисунок 1.3).

Рисунок 1.3 – Унитарная схема асимметричного строения

биомембраныРобертсона

 

Предложенная модель во многом сходна с классической моделью Даниелли Дж.: основу мембраны составляет липидный бислой, а нелипидные компоненты (прежде всего белки) в полностью развернутой конформации лежат на поверхности бислоя, связываясь с липидами за счет электростатических и гидрофобных взаимодействий. В модели Робертсона нашла отражение еще одна важная структурная особенность мембраны – ее асимметрия.

Последующий прогресс в мембранологии, в результате которого сформировались современные представления о структуре биомембран, в значительной мере был достигнут благодаря успехам в изучении свойств мембранных белков. Электронно-микроскопические исследования с применением метода замораживания–скалывания показали, что в мембраны встроены глобулярные частицы, а биохимикам с помощью детергентов удалось диссоциировать мембраны до состояния функционально активных «частиц». Данные спектральных исследований указывали, что для мембранных белков характерно высокое содержание α-спиралей и что они, вероятно, образуют глобулы, а не распределены в виде монослоя на поверхности липидного бислоя. Неполярные свойства мембранных белков наводили на мысль о наличии гидрофобных контактов между белками и внутренней неполярной областью липидного бислоя. Тогда же были разработаны методы, позволившие выявить текучесть липидного бислоя. Сингер и Николсон свели воедино все эти идеи, предложив в 1972 г. новую модель молекулярной организации биомембран – жидкостно-мозаичную модель (рисунок 1.4).

 

1 – углеводные фрагменты гликопротеидов; 2 – липидный бислой;

3 – интегральный белок; 4 – «головки» фосфолипидов;

5 – периферический белок; 6 – холестерин;

7 – жирнокислотные «хвосты» фосфолипидов

Рисунок 1.4 – Модель жидкостно-мозаичной мембраны

Сингера и Николсона

 

Согласно жидкостно-мозаичной модели:

1) Структурной основой биомембран является липидный бислой, в котором углеводородные цепи молекул фосфолипидов находятся в жидкокристаллическом состоянии.

2) В липидный бислой, имеющий вязкость растительного масла, погружены или встроены молекулы белков, способные передвигаться по мембране.

В противоположность прежним моделям, рассматривающим мембраны как системы из жестко фиксированных компонентов, жидкостно-мозаичная модель представляет мембрану, как «море» жидких липидов, в котором плавают «айсберги» белков. В зависимости от прочности связи с мембраной белки в рамках мозаичной модели подразделяются на два типа: периферические и интегральные.

К периферическим относятся белки, которые связаны с мембраной за счет полярных и ионных взаимодействий и относительно легко отделяются от нее в мягких условиях, например, при промывании буферными растворами с различными значениями рН или ионной силы либо растворами, содержащими комплексообразующие вещества типа ЭДТА.

Интегральные белки имеют на своей поверхности большие гидрофобные участки и располагаются внутри мембраны. Для выделения интегральных белков необходимо сначала разрушить липидный бислой.

Жидкостно-мозаичная модель строения биомембран в настоящее время является общепризнанной, однако следует помнить, что она все же представляет собой упрощенное и схематичное отражение такой сложной и разносторонней системы, как биологическая мембрана. Одним из постулатов этой модели является предположение о свободном движении молекул белков и липидов в двумерной фазе липидного бислоя. Однако вскоре выяснилось, что не все белки и липиды способны к свободному перемещению, в некоторых случаях их подвижность сильно ограничена. Во многих мембранах интегральные белки находятся в фиксированных положениях за счет высокой концентрации белка вследствие его агрегации, образования липидных доменов, а также взаимодействия белков с цитоскелетом, образуемым внутренними структурами клетки.

В некоторых мембранах значительные количества липидов могут находиться в сильно упорядоченном состоянии или, наоборот, в составе небислойных фаз. Это означает, что распределение липидов вдоль поверхности мембраны не является гомогенным, как следовало бы ожидать в случае их свободной диффузии согласно жидкостно-мозаичной модели, а в значительной мере гетерогенно [1].

Кроме того, жидкостно-мозаичная модель не объясняет высокую гетерогенность липидного состава биологических мембран. Необходимо отметить, что липиды биологических мембран различаются не только по структуре полярных групп, но и по степени ненасыщенности и длине углеводородных цепей, а также по способу их присоединения к глицериновому остатку (сложная эфирная, простая эфирная и винильно-эфирная связь). Липидный состав биологических мембран всегда чрезвычайно гетерогенен, и в его построении участвуют сотни химически индивидуальных липидных молекул. Данный факт не согласуется с представлениями о пассивной роли липидов в функционировании мембран в качестве структурной матрицы, в которой расположены мембранные белки [1].

Несмотря на это в настоящее время по-прежнему пользуются жидкостно-мозаичной моделью строения мембраны, но в усложненной форме, в которой отражены новые, специфические, не известные ранее закономерности.

Согласно современным представлениям центральный слой такой мембраны представляет собой текучий липидный бислой с включениями внутримембранных белков. Полагают, что ассоциированные с мембраной белки являются глобулярными. Некоторые из них расположены на полярной поверхности мембраны или частично погружены в ее монослой как с наружной, так и с внутренней стороны. Это так называемые периферические, функционально ассоциированные с мембраной белки, удерживаемые на ее поверхности при помощи нековалентных связей. Другие, интегральные, белки проходят через всю толщу мембраны, в том числе и через внутренние неполярные ее слои. В интегральных белках последовательность аминокислотных остатков распределена таким образом, что гидрофобные остатки аминокислот формируют структуры, которые пронизывают мембрану, а гидрофильные образуют функциональные домены на внутренней и/или наружной поверхности мембраны. Таким образом, функционально разные белки мембраны образуют в жидкокристаллическом бислое фосфолипидов своеобразную мозаичную структуру. Эта мозаика не является строго фиксированной, что позволяет разным классам ФЛ и минорным липидам мембраны при латеральной диффузии формировать определенные кластеры (участки поверхностного монослоя мембраны).

Плазматическая мембрана содержит много гликолипидов, полярные углеводные части которых (остатки моно- и олигосахаридов) расположены на ее поверхности, что позволяет им выполнять специфичные функции, такие как рецепция (клеточное узнавание) и иммунохимические реакции. Выступающие из бислоя гидрофильные олигосахаридные участки гликолипидов образуют у эукариотических клеток подобие наружной оболочки – гликокаликса.

Определенную роль в стабилизации липидного бислоя играет и слой воды, покрывающий снаружи монослой фосфолипидов и мембранных белков. Такие монослои воды удерживаются на поверхности мембраны за счет водородных связей между полярными «головками» ФЛ и молекулами воды [2]. В бислое индивидуальные липидные молекулы могут перемещаться (латеральная диффузия), что обеспечивает мембране жидкостность и гибкость. Отдельные молекулы ФЛ в зависимости от длины их жирнокислотных цепей способны перемещаться между наружным и внутренним монослоем мембраны, используя механизм флип-флопа.

Все это указывает на то, что бислойная мембрана является единой динамичной и саморегулирующейся системой [3].

На рисунке 1.5 представлена современная более усложненная жидкостно-мозаичная модель мембраны эукариотической клетки.

Рисунок 1.5 – Современная интерпретация жидкостно-мозаичной

модели мембраны (по [4] с изменениями)

 

На рисунке 1.5 видны встроенные в мембрану периферические и интегральные белки и молекулы холестерина; показано взаимодействие мембранных белков с внутриклеточными волокнами цитоскелета (нижняя часть рисунка) и с внеклеточным матриксом, при возможном участии связанных с мембраной гликолипидов и гликопротеинов (верхняя часть рисунка).

Современная интерпретация жидкомозаичной модели объясняет многие свойства биологических мембран, например, неодинаковое число молекул белка на единицу площади, ассиметрию, возможность расположения белков только на внутренней или только на наружной поверхности, разную толщину мембраны и др.

Эта модель позволяет понять высокое электрическое сопротивление мембраны, избирательную проницаемость, изменчивость, а также латеральную диффузию – перемещение отдельных липидов и белков в плоскости наружного монослоя со значительной скоростью.




infopedia.su

Модель биологических мембран — Студопедия

Первоначальные представления о существовании мембран опирались на физиологические исследования. Первые указания на лимитирующие диффузию свойства клеточной поверхности были получены в середине XIX века К.В.Нагели. Он отметил, что клеточная поверхность является барьером для свободной диффузии красителей внутрь клетки из внеклеточной жидкости. Кроме того, Нагели обнаружил, что клетки проявляют осмотические свойства. На основании этих наблюдений К.В.Нагели предположил, что существует некая плазматическая мембрана.

Используя эритроциты в качестве осмометра, Э.Овертон в конце XIX века выявил тесную взаимосвязь между растворимостью вещества в липидах и его способностью проникать в клетку: чем больше эта растворимость, тем меньший осмотический эффект оказывает вещество. Эти данные явились первым свидетельством того, что мембраны содержат большое количество липидов.

Морфологические данные о существовании клеточной мембраны были получены только после разработки методов приготовления ультратонких срезов тканей, фиксированных химическими методами для проведения электронно-микроскопических исследований. Тонкая структура мембран была исследована с помощью метода замораживания – скалывания.

Первыми авторами, которые предложили модель структурной организации мембраны, были Э. Гортер и Ф. Грендель (1925).

Они экстрагировали липиды из теней эритроцитов и приготовляли из них мономолекулярную плёнку на поверхности воды. Амфифильные молекулы липидов распределялись таким образом, что их полярные головки были погружены в воду, а неполярные хвосты торчали наружу. Пленку диспергированных молекул на поверхности воды аккуратно сжимали в латеральном направлении и измеряли силу сжатия. Резкое возрастание этой силы происходило в момент формирования компактного монослоя.


Оказалось, что площадь, занимаемая монослоем, в 2 раза превышала поверхность эритроцитов, взятых для экстракции. Именно это послужило основанием для создания Э. Гортером и Ф. Гренделем концепции липидного бислоя, которая впоследствии легла в основу всех дальнейших представлений о структуре мембран.

Измерение поверхностного натяжения липидного бислоя показало, что оно гораздо больше, чем в мембране эритроцитов, и снижается при добавлении в бислой белков. На основании этих данных в 1931 году Дж. Ф. Даниэлли предложил модель «сэндвича» или унитарную мембранную модель. По его представлениям, белки покрывают обе поверхности липидного бислоя, связываясь с ним электростатическими силами. Из расчётов выходило, что белки находятся на мембране в фибриллярной форме. Этой модели неплохо соответствует миелин – мембрана леммоцитов.


Робертсон несколько модифицировал модель Даниэлли (1964), предположив, что глобулярные белки находятся на внешней стороне мембраны, а фибриллярные белки на внутренней.

Однако с термодинамической точки зрения маловероятно, что белок может успешно конкурировать с водой за полярные головки липидных молекул и что слой белка смог бы экранировать их от водного окружения.

Современные методы исследования окончательно опровергли «бутербродную модель» мембраны.

На сегодняшний день общепризнанной является «мозаичная» модель мембраны, предложенная в 1972 году С. Сингером и Г. Николсоном. Основанием для создания жидкостно-мозаичной модели мембраны послужили данные следующих исследований. Оптические наблюдения показали, что мембранные белки имеют глобулярную структуру. Было установлено, что некоторые белковые молекулы свободно диффундируют в латеральном направлении, т.е. в плоскости мембраны. Исследования с использованием изотопов и др. показали, что белковые молекулы или их части, экспонированные с одной стороны мембраны, отличаются от других, выходящих на другую сторону мембраны.

Согласно этой модели, глобулярные белки интегрированы в липидный бислой; при этом одни из них пронизывают его насквозь, другие лишь частично погружены в бислой. Мембрана является лабильной структурой, все её компоненты имеют возможность осуществлять различные формы подвижности – латеральную диффузию, вращательные движения, «флип – флоп» переходы и другие.

Жидкостно-мозаичная модель, по-видимому, дает наиболее адекватные представления о структурной организации поверхностной мембраны и многих внутриклеточных мембран.

Рис. 10. Жидкостно-мозаичная модель биологической мембраны. 1 - липидный бислой; 2 - полуинтегральные белки; 3- интегральные белки; 4- периферические белки; 5 - углеводы.  

studopedia.ru

Жидкостно-мозаичная модель мембраны — Студопедия

В 1972 г. Сингер и Николсон (Singer, Nicolson) предложили жидкостно-мозаичную модель мембраны, согласно которой белковые молекулы плавают в жидком фосфолипидном  бислое. Они образуют в нем как бы своеобразную мозаику, но поскольку бислой этот жидкий, то и сам мозаичный узор не жестко фиксирован; белки могут менять в нем свое положение.

Покрывающая клетку тонкая мембрана напоминает пленку мыльного пузыря — она тоже все время «переливается».

На рисунке представлено плоскостное изображение жидкостно-мозаичной модели мембраны и ее трехмерная модель.

Ниже суммированы известные нам данные, касающиеся строения и свойств клеточных мембран.

1. Толщина мембран составляет около 7 нм.

2. Основная структура мембраны — фосфолипидный бислой.

3. Гидрофильные головы фосфолипидных молекул обращены наружу — в сторону водного содержимого клетки и в сторону наружной водной среды.

4. Гидрофобные хвосты обращены внутрь — они образуют гидрофобную внутреннюю часть бислоя.

5. Фосфолипиды находятся в жидком состоянии и быстро диффундируют внутри бислоя — перемещаются в латеральном направлении.

6. Жирные кислоты, образующие хвосты фосфолипидных молекул, бывают насыщенными и ненасыщенными. В ненасыщенных кислотах имеются изломы, что делает упаковку бислоя более рыхлой. Следовательно, чем больше степень ненасыщенности, тем более жидкую консистенцию имеет мембрана.

7. Большая часть белков плавает в жидком фосфолипидном бислое, образуя в нем своеобразную мозаику, постоянно меняющую свой узор.


8. Белки сохраняют связь с мембраной, поскольку в них есть участки, состоящие из гидрофобных аминокислот, взаимодействующих с гидрофобными хвостами фосфо-липидов; вода из этих мест выталкивается. Другие участки белков гидрофильны. Они обращены либо к окружению клетки, либо к ее содержимому, т. е. к водной среде.

9. Некоторые мембранные белки лишь частично погружены в фосфолипидный бислой, тогда как другие пронизывают его насквозь.

10. К некоторым белкам и липидам присоединены разветвленные олигосахаридные  цепочки, играющие роль антенн. Такие соединения называются соответственно гликопротеинами  и гликолипидами.

11. В мембранах содержится также холестерол. Подобно ненасыщенным жирным кислотам он нарушает плотную упаковку фосфолипидов и делает их более жидкими. Это важно для организмов, живущих в холодной среде, где мембраны могли бы затвердевать. Холестерол делает мембраны также более гибкими и вместе с тем более прочными. Без него они бы легко разрывались.


12. Две стороны мембраны, наружная и внутренняя, различаются и по составу, и по функциям.

Химический состав мембран.

С помощью световой и электронной микроскопии в клетках выявлены разнообразные мембранные структуры. Все они имеют сходный химический состав и принцип организации, но в зависимости от типа мембран и их функций соотношение химических компонентов и детали строения могут отличаться.

Мембраны состоят из липидов, белков и углеводов (рис.16). Липиды составляют в среднем 40% сухой массы мембран. Среди них преобладают фосфолипиды (до 80%).

Основным функциональным компонентом биологических мембран являются белки. Но только образовав прочные комплексы с липидами, они способны проявлять активность.

Поверхностные белки (около 30% от общего количества мембранных белков) размещены на наружной и внутренней поверхностях мембран и связанные с последними электрическими силами непосредственно или через двухвалентные катионы, преимущественно Са2 + и Mg2 +. Они легко отделяются от мембран после разрушения клеток.

Внутренние белки (почти 70% общего количества мембранных белков) погружены в двойной слой липидов на разную глубину, а в некоторых случаях пересекают мембрану насквозь. Такие белки связывают обе поверхности мембраны.

Углеводы входят в состав мембран не самостоятельно, а образуют комплексы с белками или липидами.

Организация биологических мембран. Сейчас общепринятой является модель растворимо-мозаичной строения мембран (рис.16). Такое название произошло от того факта, что около 30% липидов тесно связаны с внутренними белками, а остальное - находится в жидком состоянии, где «плавают» липопротеиды. Молекулы липидов размещены в виде двойного слоя, их полярные гидрофильные «головки» обращены к внешней и внутренней сторон мембран, а гидрофобные неполярные «хвосты» - внутрь.

Если посмотреть на мембрану сверху, то она напоминает мозаику, созданную полярными «головками» липидов, поверхностными и внутренними белками. Толщина мембран варьирует в довольно широких пределах в зависимости от их типа. Мембраны клеток эукариот и прокариот сходны по строению.

Между молекулами белков или их частями часто существуют поры (канальцы), заполненные водой. Молекулы, входящие в состав мембран, способные перемещаться, благодаря чему мембраны быстро возобновляются за незначительных повреждений, образуются над оголенными участками цитоплазмы, могут легко сливаться друг с другом, растягиваться и сжиматься, например, при движении клеток или изменения их формы.

studopedia.ru

Биология для студентов - 005. Современные представления о строении биологических мембран. Модель Сингера — Никольсона

К началу 70-х гг. накопилось много новых фактов, на основании которых С. Дж. Сингер и Г. Л. Николсон предложили в 1972 г. новую жидко-мозаичную модель строения биологической мембраны, являющуюся в настоящее время общепризнанной.

Согласно этой модели основой мембраны является липидный бислой (двойной слой), в котором гидрофобные хвосты молекул обращены внутрь, а гидрофильные головки — наружу. Липиды представлены фосфолипидами — производными глицерина или сфингозина. С липидным слоем связаны белки: они могут примыкать к липидному слою, погружаться в него или же пронизывать насквозь. Интегральные (трансмембранные) белки пронизывают мембрану насквозь и прочно с ней связаны; периферические белки не пронизывают мембрану и связаны с ней менее прочно. Функции мембранных белков различны:

  • поддержание структуры мембран,
  • получение и преобразование сигналов из окружающей среды,
  • транспорт некоторых веществ,
  • катализ реакций, происходящих на мембранах.

Толщина мембраны составляет от 6 до 10 нм.

1 — белковая пора, 2 — полупогруженные молекулы белков, 3 — бимолекулярный слой липидов, 4 — гликокаликс (гликопротеидный комплекс — указатель типа клеток)

Бислой является жидкой структурой, в которой образующие его липиды способны осуществлять сегментальную подвижность, вращательные движения и латеральную диффузию. С меньшей скоростью они способны к переходу на другую сторону бислоя и к выходу из него.

Белки в бислое также лабильны. Время вращательной диффузии для белка в бислое может составлять, меньше 1 мкс. Латеральная подвижность белка определяется не только его собственными свойствами, но и микровязкостью липидного окружения, его упаковкой - фазовым состоянием липидов. Таким образом, подвижность белковых молекул и их ассоциация в мембране контролируются липидами. Аннулярные липиды выявляются в виде слоя, окружающего белковые молекулы, с временем жизни, соответствующей 10-5-10-8с. Ограничение подвижности молекул аннулярных липидов может иметь определенное значение. Время обмена молекулами между аннулярным слоем и суммарным липидным фондом зависит также от структурированности мембраны, а значит, от температуры, жирнокислотного состава ее компонентов, характера взаимодействия молекул липидов друг с другом. Липиды способны образовывать определенные упорядоченные структуры с общей «системой координат» - кластеры, в которых плотность упаковки может существенно отличаться от соседних с ними частей. Время жизни кластеров составляет порядка нескольких мкс., количество молекул в кластере - от десяток до нескольких сотен, а межкластеровые зоны могут образовывать зоны дефектов, облегченных проникновением в бислой модификаторов.

Важной особенностью мембраны является ее ассиметрия, создаваемая за счет действия внутриклеточных ферментов, различий ионного состава цитоплазмы и интерстициальной жидкости, а также особеннстей структуры молекул фосфолипидов и асимметричной локализации белков в бислое. Асимметрия бислоя - это фактор, обеспечивающий создание градиента кривизны, складок, сморщиваний, отшнуровки частей мембраны в виде везикул, что существенно для обеспечения межклеточных взаимодействий.

Свойства мембраны:

  1. Текучесть. Мембрана не представляет собой жесткую струк­туру — большая часть входящих в ее состав белков и липидов может перемещаться в плоскости мембраны.
  2. Асимметрия. Состав наружного и внутреннего слоев как белков, так и липидов различен. Кроме того, плазматические мембраны животных клеток снаружи имеют слой гликопротеинов (гликокаликс, выполняющий сигнальную и рецепторную функции, а также имеющий значение для объединения клеток в ткани).
  3. Полярность. Внешняя сторона мембраны несет положитель­ный заряд, а внутренняя — отрицательный.
  4. Избирательная проницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определенные молекулы и ионы растворенных веществ. (Использование по отношению к мембранам клеток термина «полупроницаемость» не совсем корректно, так как это понятие подразумевает то, что мембрана пропускает только молекулы растворителя, задерживая при этом все молекулы и ионы растворенных веществ.)

vseobiology.ru

Строение и модели мембран

Количество просмотров публикации Строение и модели мембран - 3089

Физические процессы в биологических мембранах

Лекция 7.

Физические вопросы строения и функционирования мембран. Транспорт веществ через мембраны. Пассивный транспорт. Простая и об­легченная диффузия. Математическое описание пассивного транспорта.

Активный транспорт ионов. Механизм активного транспорта на при­мере натрий-калиевого насоса.

Биологические мембраны являются важной частью клетки. Οʜᴎ ограничивают клетку от окружающей среды, защищают ее от вредных внешних воздействий, управляют обменом веществ между клеткой и ее окружением, способствуют генерации электрических потенциалов, участвуют в синтезе универсального аккумулятора энергии — аденозинтрифосфорной кислоты (АТф) в митохондриях и т. д. По существу, мембраны формируют структуру клетки и осуществляют ее функции. Нарушение функций клеточной и внутриклеточной мембран лежит в осно­ве необратимого повреждения клеток и, как следствие, развития тяжелых заболеваний сердечно-сосудистой, нервной, эн­докринной систем и пр.
Размещено на реф.рф
В главе рассматриваются физические свойства биологических мембран и основные физические процессы, которые в них происходят.

Все клетки окружены мембранами (цитоплазматическими, или наружными клеточными мембранами). Без мембраны содержимое клетки просто бы ʼʼрастеклосьʼʼ, диффузия привела бы к термоди­намическому равновесию, что означает отсутствие жизни. Можно сказать, что первая клетка появилась тогда, когда она смогла отделиться от окружающей среды мембраной. Внутриклеточные мембраны подразделяют клетку на ряд замкнутых отсеков (компартаментов), каждый из них выполняет определœенную функцию.

Несмотря на разнообразие биологических функций и форм, всœе мембраны построены в основном из липидов и белков. Другие соединœения, встречающиеся в мембране (к примеру, углеводы), химически связаны с липидами, либо с белками. Липидная молекула состоит из двух частей: несущей электрические заряды (полярной) головки, на которую приходится, как правило, четверть длины всœей молекулы (рис. 11.1), и длинных хвостов, не несу­щих электрического заряда (гидрофобных). Хвосты липидной молекулы — это длинные цепи, построенные из атомов углерода и водорода (остатки жирных кислот). Головки могут иметь разнообразное строение, однако они заряжены либо отрицательно, либо нейтральны. Связующим звеном между хвостом и головкой чаще всœего служит остаток глицерина.

Набор мембранных белков, выполняющих специализированные функции, различается в цитоплазматических мембранах и мембранах внутриклеточных структур.
Размещено на реф.рф
В то же время любая мембрана своей структурной основой имеет липидный бислой, состоящий из двух мономолекулярных пленок липидов, обращенных друг к другу гидрофобными хвостами и контактирующих с окружающей средой полярными головками (рис. 11.2). Во всœех мембранах бислой выполняет две основные функции: матричную и барьерную. С одной стороны, бислой является структурной основой для размещения базовых рецепторных и ферментных систем клетки, с другой стороны, двойной слой липидов является преградой для ионов и водорастворимых молекул.

Первая попытка представить молекулярную организацию биологической мембраны принадлежит Даниели и Давсону, которые в 1935 ᴦ. предложили модель клеточной мембраны. Согласно этой модели, липиды располагались в два слоя (см. рис. 11.2), а поверхность липидов с обеих сторон покрывали белки. По мере приобретения новых знаний о химическом составе и физических свойствах мембран эволюционировали и представления об их организации. Сегодня наибольшее распространение имеет предложенная в 1972 ᴦ. Синджером и Николсоном жидко-мозаичная модель, в базе которой лежит всœе та же липидная бислойная мембрана. Эта липидная основа представляет собой как бы двумерный растворитель, в котором плавают более или менее погруженные белки. За счёт этих белков полностью или частично реализуются специфические функции мембран — проница­емость, активный перенос через мембрану, генерация электрического потенциала и т. д. Схематично жидко-мозаичная структура мембраны показана на рис. 11.3. Здесь 1 — поверхностные белки, 2 — полупогруженные белки, 3 — полностью погруженные (ин­тегральные) белки, 4 — белки, формирующие ʼʼионный каналʼʼ 5.

В целом, мембрана является динамичной структурой. Липиды могут перемещаться в плоскости мембраны (латеральная диффузия), а также переходить из одного монослоя в другой (флип-флоп переходы). При этом перемещение липидов в пределах одного мо­номолекулярного слоя происходит почти в 10 млрд раз чаще, чем флип-флоп переход. Белки также могут перемещаться в плоскости мембраны.

Уточнение строения биологических мембран и изучение их свойств оказалось возможным при использовании физико-химических моделœей мембраны (искусственные мембраны). Наибольшее распространение получили три модели.

Рассмотрим первую модель — монослой липидов на границе раздела вода — воздух или вода — масло. На таких границах молекулы липидов расположены так, что гидрофильные головки находятся в воде, а гидрофобные хвосты — в воздухе или в масле (рис. 11.4). В случае если постепенно уменьшать площадь, занимаемую монослоем, в конце концов удастся получить монослой, в котором молекулы расположены так же плотно, как и в одном из монослоев мембраны. При изменении состояния липидных молекул (под действием температуры, взаимодействия липидов с различными лекарственными препа­ратами и пр.) меняется площадь, занимаемая молекулами. По этой причине в биологических и медицинских исследованиях широко используются монослои синтетических липидов, изолированных из различных природных мембран.

Вторая широко использующаяся модель — бислойная липид-ная мембрана (БЛМ). Впервые такая модельная мембрана была создана в 1962 ᴦ. П. Мюллером с сотрудниками. Οʜᴎ заполнили отверстие в тефлоновой перегородке, разделяющей два водных раствора, фосфолипидом, растворенным в гептане (рис. 11.5, а). После того как растворитель и излишки липида растекаются по тефлону, в отверстии образуется бислой толщиной несколько на­нометров и диаметром около 1 мм (рис. 11.5, б). Расположив по обе стороны мембраны два электрода, можно измерить сопротив­ление мембраны или генерируемый на ней потенциал. В случае если по разные стороны перегородки поместить различные по химическо­му составу растворы, то можно изучать проницаемость мембраны для различных агентов, в т.ч. лекарственных препаратов.

Третьей известной моделью биологической мембраны являются липосомы. Οʜᴎ представляют из себямельчайшие пузырьки (ве­зикулы), состоящие из билипидной мембраны и полученные обра­боткой ультразвуком смеси воды и фосфолипидов. Липосомы фактически являются биологической мембраной, полностью ли­шенной белковых молекул. Схематически липосомы изображены на рис. 11.6

В случае если липосомы приготовить в среде с каким-либо веществом, а затем удалить это вещество из внешней среды, то можно исследовать скорость выхода этого вещества из липосом данного липидного состава. На липосомах часто проводятся эксперименты по изучению влияния различных факторов, к примеру состава фосфолипидов, на свойства мембраны или, напротив - влияния мемб­ранного окружения на свойства встраиваемых белков. В медицинœе липосомы используют для доставки лекарственных веществ в определœенные органы и ткани, приготавливая их в среде, содержащей нужное вещество. Липосомы не токсичны, полностью ус­ваиваются в организме и являются надежной липидной микрокапсулой для направленной доставки лекарства.

referatwork.ru

Плазматическая мембрана [Клеточная, Плазмалемма, Цитолемма]

Основная статья: Поверхностный аппарат клетки

Содержание (план)

Плазматическая мембрана — это наи­более постоянная, основная, универсальная для всех клеток суб­система поверхностного аппарата. Главными химическими со­единениями, образующими плазматическую мембрану, являются липиды и белки, количественное соотношение которых может варьировать в мембранах разных клеток в довольно широких пределах.

История изучения строения биологических мембран

Билипидная мембрана

Изучение морфобиохимической организации плазма­тической мембраны началось еще в первой половине XX в. на объектах, очень удобных для этой цели,— так называемых «тенях» эритроцитов, представляющих собой поверхностный аппарат безъядерных гемолизированных эритроцитов млекопи­тающих.

В 1925 г. была опубликована работа Гортера и Гренделя, которые экстрагировали из теней эритроцитов липиды и опре­деляли их количество, приходящееся на общую поверхность одного эритроцита. Величина поверхности эритроцита, по дан­ным авторов, оказалась равной 90 мкм2, а количество липидов, содержавшееся в тенях эритроцитов, было таково, что его как раз хватало на образование сплошного билипидного слоя пло­щадью 90 мкм2. Переисследование этого вопроса современными методами показало, что Гортер и Грендель допустили две ошиб­ки. С помощью примененных ими методов экстракции они смогли извлечь лишь 70% мембранных липидов и, кроме того, неточно определили величину общей поверхности эритроцита: она равна не 90, а 145 мкм2. Однако эти довольно грубые ошиб­ки, суммируясь, дали близкий к истине результат, и общая идея о существовании билипидного слоя, высказанная Гортером и Гренделем, оказалась справедливой. По их представле­ниям в основе организации клеточной мембраны лежит двойной слой липидных молекул, обращенных друг к другу гидрофоб­ными цепями жирных кислот. На внутренней и внешней поверх­ностях мембраны расположены полярные гидрофильные го­ловки липидных молекул. Идея о наличии липидной фазы, орга­низованной на основе гидрофильных и гидрофобных взаимодей­ствий, сохраняет свое значение до настоящего времени.

Бутербродная модель мембраны

Последующий анализ свойств билипидных пленок в модель­ных опытах показал, что поверхностное натяжение пленок на­много выше, чем у мембраны клеток. При добавлении к липид­ным пленкам белка поверхностное натяжение системы снижалось. Учитывая эти факты и данные по анализу химического состава мембран, логично было предположить, что в структуре плазматических мембран большую роль играют белки. В связи с этим в 1935 г. Даниэли и Даусон предложили первую, так называемую «бутербродную» модель организации мембраны (рис. 2,А). Суть ее заключается в том, что основу мембраны составляет двойной слой липидных молекул, обращенных друг к другу гидрофобными участками, а внешняя и внутренняя по­верхности билипидного слоя, образованные гидрофильными участками молекул, покрыты сплошными слоями белка. Эта умозрительная модель получила неожиданное морфологическое подтверждение в первых ультраструктурных исследованиях, выполненных в середине 50-х годов.

Элементарная биологическая мембрана

Одной из первых универсальных клеточных структур, обна­руженных с помощью электронного микроскопа, оказались трех­слойные мембраны толщиной до 10 нм. Они состояли из двух периферических электронно-плотных слоев и более толстого промежуточного светлого слоя.

Эта структура отвечала «бутербродной» модели Даниэли и Даусона: в светлом центральном слое вполне могла располо­житься гидрофобная часть билипидной фазы, электронно-плотные слои соответствовали гидрофильным головкам липидных молекул и сплошным слоям белка, находящимся на поверх­ности (см. рис. 2,А). Такое совпадение умозрительной модели и прямых морфологических наблюдений создало впечатление о том, что проблема организации биологических мембран в прин­ципе решена и «бутербродная» модель Даниэли и Даусона вполне справедлива. Кроме того, интенсивное изучение клеточ­ных мембранных структур на первом этапе электронно-микро­скопических исследований свидетельствовало в пользу универ­сального принципа их организации. В связи с этим в начале 60-х годов Робертсоном была сформулирована гипотеза об еди­ной унитарной «элементарной» биологической мембране. Гипо­теза постулировала единое трехслойное строение всех клеточ­ных мембран и возможность взаимопереходов между ними. Материал с сайта http://wiki-med.com

Жидкостно-мозаичная модель мембраны

см. Жидкостно-мозаичная модель мембраны

Строение плазматической мембраны

см. Строение плазматической мембраны

Функции плазматической мембраны

см. Функции плазматической мембраны

Наличие жидкостно-мозаичной модели организа­ции мембраны, более или менее удовлетворительно объясняю­щей экспериментальные факты, создает предпосылки к конкрет­ному изучению общих и частных функций биологических мем­бран.

На этой странице материал по темам:
  • конспект история изучения строения биологических мембран

  • гипотеза элементарной мембраны

  • строение клеточной мембраны: теория бутерброда

  • бутербродная модель мембраны кем было предложено

  • модель мембраны гортера и гренделя

wiki-med.com

Появление и эволюция клеточной мембраны

У всех современных организмов клеточная мембрана играет принципиальную роль в энергетическом обмене и других биохимических процессах. Новые исследования эволюции мембран позволяют ответить на многие каверзные вопросы: как мембрана появилась у нашего далекого предка LUCA, почему мембраны бактерий и архей так непохожи и каким образом эукариоты обзавелись мембранными органеллами.

Мембрана играет важнейшую роль в нормальном функционировании клетки: она обеспечивает отделение клетки от внешней среды и за счет компартментализации создает необходимую среду для протекания различных биохимических и энергетических процессов. Немало исследований посвящено изучению биохимии и биофизики биомембран [1], но не менее важное значение имеет и изучение их эволюции. Как и при каких обстоятельствах мембрана появилась в эволюции живого впервые? Когда появились первые эукариоты, и каким образом они обзавелись множеством внутренних мембран, которых нет у прокариот? Над этими вопросами ученые ломают головы уже долго, но до недавнего времени они могли оперировать только умозрительными гипотезами. Развитие масштабных методов анализа геномов (и прочих «омов» [2]), биоинформатики и математического моделирования в биологии [3] позволили если и не дать исчерпывающие ответов, то подобраться к ним вплотную.

Происхождение эукариот «наизнанку»

В недавно опубликованной в журнале BMC Biology статье [4] Дэвид и Базз Баумы, основываясь на большом количестве филогенетических данных, выдвинули новую гипотезу происхождения эукариотической клетки. Они называют эту гипотезу «моделью наизнанку» (inside-out, изнутри — наружу), в противовес господствовавшей до сих пор гипотезе «снаружи — внутрь» (outside-in). Согласно традиционной теории мембранные органеллы эукариот появились благодаря «впячиванию» своей наружной мембраны. Митохондрии, например, согласно этой гипотезе, были «проглочены» будущими эукариотами с помощью фагоцитоза. Однако со времени появления этой гипотезы накопилось немало данных, которые ей противоречат и указывают на то, что ситуация была противоположной. Вероятно, новые органеллы появились у будущих эукариот более дружелюбным способом — с помощью объятий. «Модель наизнанку» предполагает, что эукариотическое ядро образовалось из основной части предковой клетки, а цитоплазма с митохондриями и другими мембранными органеллами — из выростов этой клетки, которые по началу просто окружали клетки-симбионты (рис. 1). Новую гипотезу поддерживает множество важных фактов. Например, археи (они и были этими предковыми клетками) могут только выпячивать мембрану, а «впячивать» — нет. Несомненно, эта новая гипотеза требует дальнейшей проработки, но специалисты* оценивают ее позитивно: она действительно подтверждается известными данными о морфологии и биохимии прокариот и помогает сделать предсказания, которые можно проверить экспериментально (например, механизмы сборки ядерных пор и филогению белков фагоцитоза).

Рисунок 1. Схема того, как эукариотическая клетка могла возникнуть в соответствии с «моделью наизнанку». Выросты клетки-хозяина окружили клетки-симбионты, постепенно превратив их во внутренние мембранные органеллы. Рисунок из [4].

Математическое моделирование позволило другой группе ученых лучше разобраться с еще одним важным вопросом: какой была мембрана общего предка архей и бактерий, и как ее строение определило эволюцию этих двух групп прокариот. Об этом рассказывается в их недавней статье, вышедшей в журнале PLoS Biology [6].

Бактерии и археи: единство противоположностей

Все современные живые организмы относятся к одному из трех доменов жизни: бактерии, археи и эукариоты. По более-менее общепринятой гипотезе эукариоты происходят от своеобразного «слияния» двух других групп, которые являются гораздо более древними. Бактерии и археи происходят от общего предка — по-английски он называется LUCA (last universal common ancestor, последний универсальный общий предок). Бактерии и археи имеют много общих черт, включая одинаковый генетический код, механизмы транскрипции и рибосомной трансляции, но при этом отличаются в некоторых ключевых моментах. Они имеют разный химический состав клеточных мембран и стенок, по-разному устроенный гликолиз, ионные насосы и даже разные механизмы репликации ДНК.

Возможно, различия в устройстве клеточной мембраны являются ключевыми в этом списке различий (рис. 2) [7]. Мембраны современных бактерий состоят из фосфолипидов: сложных эфиров глицерина, двух остатков жирной кислоты и одного фосфатного остатка, к которому может быть присоединена дополнительная полярная группа. Гидрофобные хвосты жирных кислот образуют средний слой мембраны, а полярные остатки глицерина, фосфата и вспомогательных полярных групп — наружный и внутренний слои. Мембраны архей устроены в принципе похоже, но на другой химической основе. Вместо жирных кислот их липиды содержат терпеновые спирты, углеводородные цепочки которых несут метильные группы через каждые четыре атома. Моделирование молекулярной динамики мембран показало, что благодаря таким метильным «ответвлениям» мембраны становятся очень прочными, но при этом сохраняют гибкость [8, 9]. Терпеновые спирты простыми эфирными связями присоединяются к глицеринфосфату, фосфатный остаток может дополняться другими полярными головками, такими же, как у бактерий. Сам глицеринфосфат архей тоже отличается от бактериального — у архей используется другой его оптический изомер (глицерин-1-фосфат вместо глицерин-3-фосфата). Получается, что мембрана — важнейший элемент, обеспечивающей существование клетки как самостоятельной единицы, — появилась у бактерий и архей независимо. Из этого удивительного наблюдения некоторые ученые даже делают вывод о том, что у LUCA мембраны вообще не было [10]. Но это крайне маловероятно, учитывая, насколько важной для большинства биохимических процессов является мембрана. Сложно представить, что молекулярные механизмы, протекающие одинаково и у бактерий, и у архей, появились и могли функционировать еще до появления мембраны. Значит, какая-то мембрана у LUCA все-таки была. Группа ученых из Университетского Лондонского колледжа с помощью математического моделирования разработала модель, описывающую, как эта мембрана выглядела, и как из нее появились разные мембраны бактерий и архей [6].

Рисунок 2. Строение мембранных липидов бактерий (справа) и архей (слева) [7].

«Протекающая» мембрана

C различным строением мембраны бактерий и архей никак не вязалось то, что производство энергии в клетках обеих групп устроено очень похожим образом. Дело в том, что во всех современных клетках производство энергии (которая запасается в виде молекул АТФ) сопряжено с мембраной. Ключевыми стадиями этого процесса являются создание градиента протонов на мембране (избыток ионов Н+ с наружной стороны мембраны по сравнению с внутренней) и работа АТФ-синтазы за счет этого градиента. При этом протоны проходят через канал в АТФ-синтазе, вызывая тем самым механический поворот части АТФ-ситназного комплекса, который, в свою очередь, обеспечивает катализ синтеза АТФ. Согласно филогенетическим исследованиям, АТФ-синтазы всех организмов имеют общее эволюционное происхождение, и предковая молекула была уже у LUCA. У некоторых бактерий и архей вместо градиента протонов используется градиент ионов натрия, а у некоторых — и тот, и другой. Долгое время считалось, что Na+ выступает в качестве заменителя H+ у организмов, живущих в экстремальных условиях (термальных источниках или в сильнощелочной среде). Однако оказалось, что натрий-специфические ферменты занимают самые нижние ветви филогенетического древа в обоих доменах, что указывает на их древность. Модель функционирования древней мембраны, предложенная британскими учеными, успешно объясняет, как и зачем в процессе эволюции возникла способность АТФ-синтазы использовать ионы натрия. Но, прежде чем ответить на этот вопрос, они должны были разобраться с еще одной проблемой — несмотря на общее происхождение АТФ-синтаз, ионные насосы возникли у бактерий и архей независимо, т.е, вероятно, у LUCA их не было. Как же тогда древняя клетка могла избавляться от протонов, поступающих внутрь при работе АТФ-синтазы, и создавать градиент протонов?

По мнению авторов исследования, единственным объяснением могло быть то, что мембрана LUCA была «протекающей» (leaky), и клетка использовала естественные источники протонного градиента. На основе своих предположений ученые построили математическую модель древней клетки. В этой модели клетка находится на границе между двумя ламинарными потоками — кислотным (pH 5–7) и щелочным (pH 9–10), не смешивающимися за счет неорганического барьера (рис. 3). Подобные условия могли существовать в древнем океане рядом с подводными щелочными источниками (сама морская вода имела кислую реакцию). При этом мембрана клетки была полупроницаемой («протекающей») и свободно пропускала ионы H+с одной стороны клетки и ионы OH с другой стороны. Эти ионы могут также свободно выходить через мембрану или взаимно нейтрализоваться внутри клетки с образованием воды. Молекула, способная к синтезу АТФ (древняя АТФ-синтаза), находится на «кислотной» стороне клетки и использует градиент протонов на этой мембране для своей работы. Согласно расчетам исследователей, разница pH в три единицы (т.е. тысячекратная разница в концентрации протонов) между щелочной и кислотной средами и молекулы АТФ-синтазы, занимающие 1% поверхности клетки, — это условия, необходимые и достаточные для того, чтобы клетка могла синтезировать необходимое количество АТФ для поддержания углеродного и энергетического метаболизма.

Рисунок 3. Условия с естественным градиентом протонов, в которых должна была обитать древняя клетка [6].

По мнению ученых, такая «протекающая» мембрана могла состоять из смеси амфифильных молекул, включая жирные кислоты и изопрены, но никак не могла содержать фосфолипиды, свойственные современным мембранам. Добавление фосфолипидов приводит к снижению проницаемости мембраны для ионов, так как полярные группы не могу проходить через неполярную внутреннюю часть мембраны. Такая мембрана не позволяла бы поддерживать градиент протонов, а значит, и работу АТФ-синтазы. Получается, что для клеток с «протекающей» мембраной не нужны ни фосфолипиды, ни ионные насосы (они никак не буду способствовать более эффективной работе АТФ-синтазы, т.к. все «накачанные» ионы будут утекать через мембрану). Чтобы понять, как произошел переход от «протекающей» мембраны к современным мембранам с ионными насосами, ученые обратились к уже упомянутому факту: некоторые АТФ-синтазы могут использовать не только протоны, но и ионы натрия.

Исследователи предположили, что необходимым шагом для перехода к современной мембране было появление способности использовать для создания энергии градиента ионов натрия. Создавать такой градиент могла бы молекула SPAP (sodium-proton antiporter, антипорт для ионов натрия и протонов), которая переносит один ион натрия в обмен на один протон. SPAP есть у многих представителей как архей, так и бактерий. Именно эта молекула могла бы использовать естественный градиент протонов для создания градиентов ионов натрия. Даже «протекающая» мембрана в шесть раз менее проницаема для ионов натри, чем для протонов, поэтому градиент ионов натрия гораздо более долговечен в таких условиях. Если АТФ-синтаза сможет использовать для производства АТФ и протоны, и ионы натрия, клетка, согласно подсчетам, сможет создавать на 60% больше энергии. Как уже было отмечено, некоторые современные АТФ-синтазы действительно способны использовать оба вида ионов. Другие используют только один тип ионов, но при этом все они отличаются только парой аминокислотных замен (вероятно, это связано со схожестью ионного радиуса и заряда ионов Na+ и H3O+ — форм, в которые этих ионы обычно транспортируются ионными каналами). Получившийся благодаря SPAP и смешанной работе АТФ-синтаз выигрыш в энергии клетки смогли бы использовать для того, чтобы начать занимать новые экологические ниши, в которых естественный градиент протонов был гораздо ниже (до 50 раз ниже) или был непостоянным. Кроме того, наличие SPAP делает выгодным наличие в клетке ионных насосов. Согласно расчетам модели, преимущество в использовании насосов возрастает со снижением проницаемости мембраны, вплоть до значений проницаемости, характерных для современных мембран.

Получатся, что SPAP — это та молекула, которая могла бы обеспечить переход от «протекающей» мембраны к почти непроницаемой современной, параллельно позволяя древним клеткам расширять ареал своего обитания. По мере расселения, в разных популяциях LUCA могли возникать различные типы насосов, поэтому в современном мире бактерий и архей мы наблюдаем такое разнообразие молекул, причем не все они имеют общее происхождение. Исследователи смогли ответить и на вопрос, связанный с принципиальным различием мембран бактерий и архей. Моделирование показало, что только после появления в эволюции ионных насосов клеткам стало выгодно снижать проницаемость мембраны за счет присоединения гидрофильных глицерол-фосфатных головок. Из-за того, что такой синтез фосфолипидов может происходить двумя путями, в зависимости от того, с какой стороны происходит нуклеофильная атака на карбонильный центр, появилось два разных хиральных варианта фосфолипидов у бактерий и архей. Получается, что разные популяции получили разные ионные насосы, а потом каждая из них пошла либо по «архейному» пути, либо по «бактериальному», в зависимости от реакции нуклеофильного замещения.

Рисунок 4. Эволюция архей и бактерий от общего предка LUCA. A—E — постепенный переход от «протекающей мембраны» к современной. F — дивергенция двух популяций, давших начало археям и бактериям, за счет эволюции мембраны. На рисунках обозначены АТФ-синтаза (ATPase), архейный и бактериальный ионные насосы (Archaeal pump, Bacterial pump) и SPAP, сыгравшие главные роkи в процессе расхождения архей и бактерий. Рисунки из [6, 11].

Заключение

Изучать появление и эволюцию жизни на самых ранних ее этапах — задача сложная и нетривиальная, требующая работы с большими объемами данных и особенных подходов. В последние годы у ученых в руках появляется все больше инструментов для таких исследований, позволяющих им проверять давно сформулированные гипотезы и выдвигать новые предположения. Иногда результаты удивляют и предполагают отказ от уже устоявшихся и давно вошедших в учебники теорий. Одно из новых исследований, например, показало, что стоит отказаться от теории происхождения мембранных органелл путем фагоцитоза, а обратить внимание на противоположную модель — модель расширения мембраны. Другое описанное в этой статье исследование предлагает еще одну достаточно революционную идею. Согласно математической модели британских ученых мембрана LUCA была «протекающей», а переход к современной мембране стал возможен благодаря антипорту протонов и ионов натрия. Эта модель подразумевает, что мембрана древних клеток состояла из жирных кислот и терпенов, хотя ранее такие мембраны считались неподходящими для производства энергии как раз из-за своей склонности к «протечкам».

Благодаря развитию информационных технологий и растущим объемам биологических баз данных ученые могут, хотя только в компьютерных моделях, заглянуть в далекое прошлое. Являются ли эти модели верными, покажут дальнейшие исследования, но уже сейчас они помогают понять многие критические точки в эволюции жизни на Земле.

  1. Липидный фундамент жизни;
  2. «Омики» — эпоха большой биологии;
  3. Вычислительное будущее биологии;
  4. Baum D.A., Baum B. (2014). An inside-out origin for the eukaryotic cell. BMC Biology 12, 76;
  5. ПостНаука: «Выдвинута новая гипотеза происхождения эукариотической клетки»;
  6. Sojo V., Pomiankowski A., Lane N. (2014) A Bioenergetic Basis for Membrane Divergence in Archaea and Bacteria. PLoS Biol 12, e1001926;
  7. Никитин М.А. (2013). Происхождение мембран и мембранной биоэнергетики. Химия и Жизнь № 9 (2013);
  8. Пресс-релиз на сайте ИБХ: «Прочные, но гибкие: молекулярная динамика объясняет уникальность биомембран архей»;
  9. Chugunov A.O., Volynsky P.E., Krylov N.A., Boldyrev I.A., Efremov R.G. (2014). Liquid but Durable: Molecular Dynamics Simulations Explain the Unique Properties of Archaeal-Like Membranes. Sci. Rep. 4, 7462;
  10. Martin W., Russell M.J. (2007). On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1887–1925;;
  11. Robinson R. (2014). A Leaky Membrane and a Sodium Transporter at Life’s Great Divergence. PLoS Biol. 12, e1001927..

biomolecula.ru

Строение и физические свойства биологической мембраны. Модели мембран.


⇐ ПредыдущаяСтр 2 из 6Следующая ⇒

Важной частью клетки является биологическая мембрана, ограничивающая клетку от окружающей среды, защищает ее от вредных внешних воздействий, управляют обменом веществ между клеткой и ее окружением, способствует генерации электрических потенциалов, участвует в синтезе универсальных аккумуляторов энергии АТФ в митохондриях и выполняет ряд других функций. Мембраны формируют структуру клетки и осуществляют ее функции. Многие заболевания (теросклероз, отравление и др.) связаны с нарушением структуры и функции мембран. Первая клетка появилась тогда, когда она смогла отграничится от окружающего мира мембраной. Внутриклеточные мембраны подразделяют клетку на ряд замкнутых отсеков, каждый из них выполняет определённую функцию. Толщина мембраны =10^-9 степени метра, ее можно рассмотреть лишь в электронный микроскоп.

Основу структуры мембраны представляет двойной липидный слой, молекулы которых состоят из полярных хвостов и неполярных гидрофобных головок. Двойной липидный слой образуется из 2-х монослоев липидов так, что хвосты направлены внутрь так обеспечивается наименьший контакт гидрофобных участков молекул с водой:

1) модель мембраны:

В настоящее время наибольшее распространение получила модель

предложенная в 1972 г. Синджером и Никольсом – жидкомазаичная модель:

1-поверхностные белки

2- полупогружённые белки

3-полностью погружённые белки

4-белки, формирующие ионный канал-5.

Мембраны не являются непосредетвенными структурами. Белки и липиды обмениваются местами, перемещающиеся вдоль и поперёк мембраны. Уточнения строения и свойств мембран стали возможными при использовании физико-клинических (искуственных) мембран.

1 - монослой фосфолипида на границах раздела вода-воздух, вода-масло

Если уменьшать площадь монослоя (а, б, в) то получается плотный монослой как в биологических мембранах.

2 - липосомы - как бы биологаческая мембрана полностью лишенная белковых молекул.

3 - билипидная мембрана

23Диффузия в жидкости. Уравнение Фика. Уравнение диффузии для мембран.

Диффузия - самопроизвольное проникновение молекул одного вещества между молекулами других.

Явление диффузии - важный элемент диффракционирования мембран. При диффузии происходит перенос массы вещества. В биофизике это называется транспорт частиц. Основным уравнением диффузии является уравнение Фика:

где I – плотность частиц при диффузии в жидкость.

D – коэффициент диффузии.

Коэффициент 1/3 возник ввиду трехмерного пространства и хаоса в движении молекул (в среднем в каждом из 3-х направлений перемещается 1/3 часть всех молекул)

сигма - средняя длина свободного пробега молекул

тау -среднее время оседлой жизни молекул

С- массовая концентрация молекул

Х- перемещение молекул вдоль оси X

- градиент массовой концентрации

Знак «-» показывает, что диффузия молекул происходит из области их большей концентрации в область меньшей концентрации.

Уравнение диффузии можно записать в виде:

n – концентрация молекул.

Градиент концентрации

R- универсальная газовая постоянная; Т- абсолютная температура градиент химического потенциала,

Тогда

С - концентрация частиц. А Эйнштейн показал, что D пропорционально Т. Дня биологических мембран уравнение Фика имеет вид:

- концентрация молекул внутри клеток

- коэффициент проницаемости

l – толщина мембраны.

 

24 Перенос ионов в электролитах. Уравнение Нернста Планка и его выражение для мембраны.

На мембране существует разность потенциалов, значит в ней есть электрическое поле. Она оказывает влияние на диффузию заряженных частиц (ионов и электронов).

В общем случае перенос ионов через мембрану определяется двумя факторами: неравномерностью их распределения, т. е. градиентом концентрации, и воздействием электрического поля

- градиент потенциала.

Е – напряженность электрического поля.

- уравнение Нернста-Планка

I - плотность потока вещества при диффузии

D - коэффициент диффузии;

- градиент концентрации;

- постоянный коэффициент;

R – универсальная газовая постоянная;

Т – абсолютная температура;

F=e* Na– число Фарадея;

е – заряд электрона;

Na – число Авагадро;

С – концентрация ионов.

Другая форма записи уравнения переноса ионов в электролитах:

Для мембран уравнение Нернста-Планка устанавливает связь между плотностью стационарного потока ионов (I), и

1) проницаемостью мембран для данного иона, которая характеризует взаимодействие мембранных структур с ионами;

2)электрическим полем;

3)концентрацией ионов в водном растворе, окружающем мембраны (С1 и С0)

- безразмерный потенциал;

φм – потенциал мембраны;

l – толщина мембраны;

плотность потоков ионов через биологическую мембрану -

 

25 Разновидность пассивного транспорта через мембрану. Понятие об активном транспорте.

Явления переноса молекул и атомов через мембрану при диффузии относятся к пассивному транспорту - ионы перемещаются из области большей их концентрации в область меньшей концентрации или перемещение ионов по направлению силы действующей на них со стороны электрического поля мембраны. Пассивный транспорт не связан с затратой химической энергии, он осуществляется в сторону меньшего электрохимического потенциала. Наряду с пассивным транспортом, в клетках осуществляется активный транспорт - перенос молекул и ионов в сторону больших концентраций (и большего потенциала). Системы мембран, способствующие созданию градиентов ионов калия и натрия получили название натрий-калиевых насосов. Простая диффузия подчиняется закону Фика для молекул; для нейтральных и заряженных частиц уравнение Нернста-Планка. В живой клетке они обеспечивают прохождение кислорода и углекислого газа. Ряд лекарственных веществ и ядов так же проникают через липидный слой, но уже по более сложной схеме. Но простая диффузия протекает медленнее и не сможет обеспечить клетку в нужном количестве питательными веществами. Есть и другие механизмы пассивного переноса: диффузия через канал (пору), облегченная диффузия (в комплексе с переносчиками). Диффузия через каналы описывается через диффузные уравнения (Фика и Нернста-Планка). Но каналы обладают селективностью (избирательностью), для разных ионов проницаемость разная. При облегченной диффузии через мембраны ионы и молекулы переносятся специальными молекулами – переносчиками. (валиномицин - антибиотик, переносит через мембраны ионы калия). Транспорт с помощью переносчиков осуществляется и в качестве эстафетной передачи.

При активном переносе ионы натрия активируют натрий–калиевый насос на внешней стороне мембраны, а ионы калия на внутренней. Активного переноса нет, если во внешней среде К+ из клетки не переносится Na+, если внутри клетки нет Na, то снаружи не переносится К+.

Натрий–калиевый насос переносит изнутри наружу 3 иона Na+, а снаружи внутрь 2К+. Внутренняя часть клетки имеет «-» потенциал покоя. Между внутренней и наружной частью мембраны создается и поддерживается разность потенциалов

 


Рекомендуемые страницы:

lektsia.com


Смотрите также