Водоросли чем питаются


способ, пищевые цепи и типы

Питание водорослей является типичным примером получения ими энергии для жизни. К примеру, растения используют солнечную энергию, а животные питаются растениями, которых съедают другие хищники.

Пищевая цепочка представляет собой последовательность того, кто кого съедает в экосистеме (биологическом сообществе) для приобретения питательных веществ и той энергии, которая поддерживают жизнедеятельность.

Основные особенности автотрофов

Автотрофами именуют живые организмы, производящие собственную пищу (органического происхождения) из простых молекул. Выделяют два основных типа автотрофов:

  • Фотоавтотрофы (фотосинтезирующие организмы), например, растения, которые используют энергию солнца для их преобразования в органические вещества — углеводы путем фотосинтеза из углекислого газа. Иными примерами фотоавтотрофов являются цианобактерии и водоросли.

  • Хемоавтотрофы приобретают органические соединения посредством химических реакций, в которых задействованы определенные неорганические соединения: аммиак, сероводород, водород.

Именно автотрофы считаются базой любой экосистемы на нашей планете. Они входят во многие пищевые сети и цепи, а энергия, которая получается в ходе хемосинтеза либо фотосинтеза, поддерживается остальными организмами экологических систем.

Говоря о том, какой способ питания для водорослей характерен, отметим, что они - типичные представители фотоавтотрофов. Если ведется речь о значении в питательных цепочках, то автотрофы называют производителями либо продуцентами.

Гетеротрофы

Чем характеризуется такая цепь питания? Водоросли применяют химическую либо солнечную энергию для производства из углекислого газа собственной пищи (углеводов). Гетеротрофы вместо энергии солнца получают энергию, используя побочные продукты либо иные организмы. Их типичными примерами являются грибы, животные, бактерии, люди. Есть несколько вариантов гетеротрофов с разнообразными экологическими функциями: от насекомых до грибов.

Питание водорослей

Водоросли, являясь фототрофными организмами, могут существовать только при наличии солнечного света, минеральных веществ, а также органических соединений. Основной средой их обитания является вода.

Существуют некоторые сообщества водорослей:

  • планктонные;
  • бентосные водоросли;
  • наземные;
  • почвенные;
  • горячих источников;
  • снега и льда;
  • соленых водоемов;
  • в известковом субстрате

Специфичность их питания состоит в том, что в отличие от животных организмов и бактерий, в процессе эволюции у водорослей выработалась способность применять для своего питания полностью окисленные неорганические соединения: воду и углекислоту.

Питание водорослей осуществляется благодаря солнечной энергии, сопровождается данный процесс выделением молекулярного кислорода.

Применение световой энергии для сложных биологических синтезов у водорослей является возможным благодаря тому, что у растений есть комплекс пигментов, поглощающих свет. Из них особое значение имеет хлорофилл.

Процесс углеродного и светового питания растений именуют фотосинтезом. В общем виде питание водорослей соответствует следующему химическому уравнению:

CO2+12h3O = C6h3O6+6h3O+2815680 Дж

На каждые 6 грамм-молекул воды и кислоты синтезируется одна грамм-молекула глюкозы. В ходе процесса выделяется 2815680 Дж энергии, образуется 6 грамм-молекул кислорода.

Функция процесса состоит в биохимическом преобразовании световой энергии в химическую энергию.

Важные моменты

Каждый вариант пищевых цепей завершается хищником либо суперхищником, то есть существом, которое не имеет естественных врагов. Например, это акула, крокодил, медведь. Их называют «хозяевами» собственных экологических систем. Если один из организмов умирает, его съедают детритофаги (черви, стервятники, крабы, гиены). Оставшаяся часть разлагается бактериями и грибами (редуцентами), продолжается обмен энергии.

Типы морфологической дифференциации водорослевого слоевища

Питание водорослей сопровождается перетеканием энергии, ее потеря характерна для каждого звена пищевой цепи.

Для одноклеточных жгутиконосцев характерна определенная организация. Амебоидная присуща видам, которые лишены плотной оболочки, а для передвижения используют цитоплазматические отростки. Пальмеллоидная образована клетками, которые погружены в тетраспору (общую слизь).

Ценобии — это колонии одноклеточных, в которых разделены между группами особей функции.

Отдел сине-зеленые водоросли

Он насчитывает порядка двух тысяч видов. Эта древнейшая группа водорослей, остатки которых найдены в докембрийских отложениях. Для них характерен фотоавторофный способ питания. Именно эта группа водорослей максимально распространена в природе.

Есть среди них и одноклеточные формы. В сине-зеленых водорослях нет четкого ядра, митохондрий, оформленных пластид, а пигменты располагаются в ламеллах - особых фотосинтетических пластинах.

Специфические особенности

Размножение осуществляется простым делением клетки для одноклеточных видов, для нитчатых — благодаря фрагментам материнской нити. Они могут фиксировать азот, поэтому поселяются в тех местах, в которых практически нет питательной среды. Такой способ питания водорослей позволяет им комфортно существовать даже на вулканах после их извержения.

Зеленые водоросли имеют хлорофиллы «а» и «б». Такой набор есть у высших и эвгленовых растений. У них также есть определенный набор дополнительных пигментов, в том числе ксантофиллы: зеаксантин, лютеин.

Для них характерен фотоавтотрофный тип питания водорослей, связанный с фотосинтезом по значимости и масштабам. В различных отделах есть такие виды, которые можно именовать строгими фотосинтетиками.

Особенности химического состава

Питание водорослей можно объяснить на основе их химического состава. Он неоднороден. В зеленых водорослях отмечается повышенное содержание белков — 40-45%. В их числе - аланин, лейпин, бикарбоновые кислоты, алгинин. До 30% в них присутствуют углеводы, до 10% - липиды. В золе есть медь, цинк.

Питание водорослей неразрывно связано с солнечной энергией и фотосинтезом. В настоящее время существенно возрос интерес к водорослям не только как к источнику питательных веществ, но и как к прекрасному сырью для получения биодизельного топлива.

Актуальными являются установки по выращиванию бурых водорослей, которые затем перерабатываются в экологически безопасное биодизельное топливо.

Водоросли — незаменимые помощники космических исследований. С их помощью экипаж космического корабля получает кислород. Подходит для подобных целей простейшая водоросль — хлорелла, отличающаяся высокой активностью фотосинтеза. Опытные водорослевые установки уже функционируют на территории нашей страны, а также в европейских государствах.

Являясь автотрофами, синтезируя из неорганических веществ органические соединения, они используют солнечный свет, получая нужное питание. Осуществляется это посредством фотосинтеза — серьезного процесса, который состоит из двух фаз: световой и темновой.

Первая фаза связана с выбиванием из хлорофилла хроматофора пучками света электронов, требуемых для некоторых процессов: фотофосфорилированием (преобразуется АДФ в АТФ), фотолиз воды (выделение гидроксильных групп), скопление НАДФ, углекислого газа, водорода.

Во время темновой фазы все то, что накопилось за день, применяется в цикле Кальвина. Продукт биохимических реакций - глюкоза, она и является пищей для водорослей.

fb.ru

Водоросли как пища и как топливо

Экология потребления.Наука и техника:Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли относятся к числу наиболее быстрорастущих живых организмов, что не могло не вызвать интереса к их использованию, как в пищевых, так и непосредственно энергетических целях — в качестве биотоплива. Активные исследования и культивирование водорослей идут начиная с 1960-х годов как в мире, так и в России. Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли в системе живых организмов

Начиная разговор о водорослях и их ценности для энергетики, нельзя не упомянуть, что вся энергия на Земле, за исключением приливной и геотермальной, является прямой или трансформированной энергией солнечных лучей.

Нагревание Солнцем поверхности суши приводит к движению воздуха, что создаёт ветряную энергию. В свою очередь, ветер на поверхности океана создаёт волновую энергию. Нагревание Солнцем водной поверхности ведёт к испарению воды и создаёт круговорот воды в природе, без которого не было бы энергии движущейся воды.

Наконец, без Солнца невозможны жизнь, прирост биомассы и биоэнергия. Более того, нефть, газ, уголь, торф — всё это именно биомасса, в различной степени трансформированная, и тоже производная от солнечной энергии.

Что касается водорослей, то эта группа живых организмов создаёт, без преувеличения, фундамент жизни на Земле, непосредственно используя солнечную энергию для роста.

Водоросли (лат. Algae) в обиходном понимании — это растения, связанные с водной средой обитания, что, однако, не всегда так. Водоросли — весьма неоднородная совокупность. Не все водоросли живут только в воде, равно как и не все водные растения относят к водорослям.

Живые организмы классифицируются различными способами. Принятая в настоящее время классификация включает два крупнейших подразделения (таксона) или две империи живых организмов:

1. Вирусы — доклеточные организмы.

2. Клеточные организмы. Клеточные организмы разбиваются на два основных таксона менее высокого порядка (надцарства или домена):

1. Прокариоты — организмы без выраженного ограниченного мембраной клеточного ядра.

2. Эукариоты — организмы с клеточным ядром.

Прокариоты включают в себя два царства организмов — археи или архебактерии и бактерии или эубактерии. Эукариоты — более обширная группа живых организмов, включающая уже известные царства грибов, растений и животных.

Организмы, объединяемые понятием «водоросли», находятся почти на всех ступенях таксономической лестницы клеточных организмов — от бактерий до растений (табл. 1) — и включают две основные группы: прокариотические водоросли — царство в домене прокариот, включающее подцарства (по другой классификации — отделы) сине-зелёных и прохлорофитовых водорослей; настоящие водоросли — подцарство в царстве растений, включающее ряд отделов.

Интересно, что таксономическое положение прокариотических сине-зелёных водорослей остаётся дискуссионным вопросом. Микробиологи Роже Стениер и Корнелис Ван Ниль, сформулировавшие теорию деления живых организмов на два глобальных домена — прокариоты и эукариоты, предложили считать термины «прокариот» и «бактерия» эквивалентными. С этого момента синезелёные водоросли классифицируются двояко — как бактерии (цианобактерии) и как растения, будучи фотосинтезирующими организмами. Кроме того, все клеточные живые организмы можно разбить на одноклеточные (простейшие, низшие, протисты) и многоклеточные (высшие) и выстроить классификацию на этой основе, выделяя простейших в отдельное царство. Среди водорослей есть и одноклеточные, и многоклеточные, а также колониальные организмы, образующие систему взаимосвязанных клеток.

Размеры водорослей варьируются в широком диапазоне — от 0,5–1 мкм (10–6 м) у ряда цианобактерий до десятков метров у некоторых растительных форм водорослей. Водоросли живут как в морских, так и в пресных водах, а также в почве.

Общим свойством зелёных растений и водорослей, в том числе прокариотических, является способность к фотосинтезу или преобразованию электромагнитной энергии солнечных лучей в энергию химических связей органических веществ, осуществляемому на свету благодаря наличию фотосинтезирующих пигментов — хлорофиллу у растений, бактериохлорофилла и бактериородопсина у прокариот.

Реакция фотосинтеза — трансформация углекислого газа и воды в глюкозу и кислород — выглядит так:

Для зелёных растений и водорослей фотосинтез является источником питания и роста. В свою очередь, именно фотосинтезирующим организмам мы обязаны появлением и сохранением пригодной для дыхания атмосферы.

Фотосинтезирующие организмы принадлежат разряду автотрофных, использующих для питания непосредственно неорганическое вещество, преобразуемое ими в органическое. Остальные организмы, в том числе животные и человек, — гетеротрофные, неспособные синтезировать органическое вещество из неорганического. Для них, в свою очередь, автотрофы создают необходимую кормовую базу и являются источником физического существования. Таким образом, водоросли относятся к организмам, с одной стороны, обязанным своим существованием непосредственно Солнцу, с другой — являющимся основой всей остальной органической жизни на Земле.

В связи с этим необходимо рассмотреть ключевые количественные показатели — объём и прирост биомассы растений и водорослей. Биомасса Земли в целом оценивается в 1,3 трлн тонн, из которых на фитомассу (растения) приходится более 1,2 трлн тонн, или более 95 % всей земной биомассы (табл. 2).

Отметим, что если в категориях биомассы рассматривать человека и население Земли, то она при населении около 7 млрд человек составит величину порядка 300 млн тонн — примерно 1/3000 или 0,03 % от всей земной биомассы и около 1 % от всей зоомассы.

При этом ежегодный прирост биомассы составляет 17 % от общей её величины или около 220 млрд тонн, в том числе океанической биомассы — более 87 млрд тонн.

Наиболее высокие скорости размножения и, соответственно, прироста биомассы характерны для мельчайших организмов, к числу которых относится и большая часть водорослей. В частности, только биомасса фитопланктона (плавучих морских водорослей) в Мировом океане оценивается (в сыром весе) в 1,5 млрд тонн, а его годовой прирост — в 550 млрд тонн. Иными словами, за год масса водорослей способна вырасти в 350 раз. По некоторым оценкам, на водоросли приходится 2/3 всей биомассы Земли. Точные же подсчёты в данном случае вряд ли возможны.

С наибольшей скоростью размножаются мельчайшие одноклеточные водоросли или микроводоросли — промежутки времени между делениями клеток в благоприятных условиях могут сокращаться до 20 минут и даже меньше. В этом случае всего за сутки одна клетка теоретически может дать примерно 5 × 1021 потомков. При массе одной клетки около 665 фемтограмм (6,65 × 10–16 кг или 6,65 × 10–13 г) их общая масса в течение суток превысит 100 тонн, а величина, равная всей нынешней биомассе Земли, будет достигнута ещё 12 часов спустя. Даже в реальных, а не идеальных условиях высокая скорость размножения водорослей, покрывающих поверхности водоёмов, хорошо известна, а при выращивании в пруду микроводоросль спирулина (Spirulina), как показывает практика, удваивает свою биомассу каждые двапять дней.

Водоросли как пища и как топливо

Благодаря столь огромному потенциалу размножения — при этом за счёт почти исключительно солнечной энергии и воды, без потребления органических веществ! — микроводоросли ещё несколько десятилетий назад стали объектом пристального внимания и исследований возможности использования в качестве пищевого и энергетического продукта.

Перспектива культивирования водорослей с ежегодным сбором десятков и сотен тонн биомассы с 1 га водной поверхности — в разы и даже на порядки больше, чем урожайность любой известной сельскохозяйственной культуры, и без существенных затрат — не могла не выглядеть крайне заманчивой.

Первоначальным было пищевое использование водорослей, имеющее давнюю историю. В частности, известно, что ацтеки, инки, а также народы Центральной и Восточной Африки, живущие в районах озера Чад и Великой рифтовой долины, употребляли в пищу лепёшки из высушенной спирулины.

В связи с этим, начиная с 1960-х годов в мире появляется интерес к водорослям (большей частью, к спирулине), прежде всего как пище — и для животных, и для человека. Был также обнаружен ряд полезных свойств водорослей, связанных с укреплением иммунитета, профилактикой и лечением ряда заболеваний, повышением продуктивности домашнего скота и сельскохозяйственных культур.

Во второй половине 1970-х годов спирулина в виде порошка или капсул появилась на мировых продовольственных рынках, где она презентовалась в качестве нового естественного продукта — энергетической натуральной пищевой добавки с высоким содержанием белка, то есть «пищи будущего».

В США предприятия по выращиванию микроводорослей в искусственных прудах, работающие в экспериментальном режиме, были созданы в 1977 году. Первые пруды появились в пустынной местности в графстве Имперская долина (Imperial Valley) на юго-востоке штата Калифорния. Условия там благоприятны благодаря сочетанию тёплой и солнечной погоды с возможностью подачи воды из реки Колорадо.

Параллельно выращиванием водорослей занялась Япония, далее в процесс включились предприятия в Индии, Китае, Таиланде, Тайване и Мексике.

В течение 1980-х годов и первой половины 1990-х годов производство микроводорослей в мире выросло до 1000 тонн. К концу 2000-х годов мировые объёмы производства микроводорослей, включая спирулину, хлореллу (chlorella), дуналиеллу (dunaliella), хематококкус (haematoccocus), достигли 10 тыс. тонн в сухом весе.

Почти в это же время, в 1980–1990-е годы, в СССР и России начали исследование и культивирование спирулины в пищевых целях, для использования в качестве биодобавок, как в пищу человеку, так и в корм для скота и птицы.

В этих работах активное участие принимали также и сотрудники Научно-исследовательской лаборатории возобновляемых источников энергии (НИЛВИЭ) географического факультета МГУ имени М. В. Ломоносова. Был установлен положительный эффект использования спирулины, в частности, в качестве пищевых добавок для птицы. В настоящее время в России существуют отдельные небольшие производства спирулины.

Что касается возможностей непосредственно энергетического использования водорослей — для получения биотоплива, то активные исследования в этом направлении начались также в 1960–1970-е годы. Лидерами в этих изысканиях стали, в частности, Французский институт нефти (Institut francais du petrole, IFP) и Национальная лаборатория возобновляемой энергии (National Renewable Energy Laboratory, NREL) Министерства энергетики США (Department of Energy, DoE).

NREL в 1978 году начала программу исследования возможностей получения топлива из микроводорослей Aquatic Species Program (буквально — Программа водных видов или водной флоры). Она была свёрнута к 1996 году, когда обнаружилось, что биотопливо из водорослей будет слишком дорогим по сравнению с ископаемыми углеводородами, однако в 2010 году было объявлено о возобновлении исследований в связи с нестабильностью цен на нефть и ростом требований к энергетической безопасности, экологической чистоте и снижению эмиссии парниковых газов.

В последние несколько лет биотопливо из водорослей получают и используют в экспериментальном режиме.

Параллельно исследования в этом направлении проходили в СССР, в том числе в НИЛВИЭ. В частности, в 1989–2002 годах лаборатория проводила исследования биопродуктивности и возможностей использования микроводорослей в качестве источника энергии, для получения биогаза и жидкого биотоплива, на базе экспериментального полигона Морского гидрофизического института АН УССР на южном берегу Крыму у посёлка Кацивели. Сотрудниками лаборатории была разработана и сконструирована система «Биосоляр», предназначенная для выращивания микроводорослей — фотосинтезирующие блоки или биогенераторы, с размещением в море и на суше, общей площадью несколько сотен квадратных метров.

В качестве объекта эксперимента была выбрана микроводоросль спирулина платенсис (Spirulina platensis), также называемая артоспира (Arthospira platensis). Одной из особенностей эксперимента была постепенная адаптация вида (в естественных условиях спирулина живёт в пресноводных субтропических и тропических водоёмах) к морской воде Чёрного моря. Опыты показали достаточно высокую продуктивность — годовой выход биомассы с каждого блока водорослевой плантации площадью 70 м2 достигал одной тонны. Экстраполируя — это более 140 тонн с 1 га, хотя достижение такого результата на больших площадях в российских условиях — отдельная задача.

Кроме того, исходное сырьё для получения биотоплива — липиды (жиры), содержание которых в разных видах различно. Спирулина обладает высокой долей белка — около 60 % сухой массы, что в числе прочего делает её ценным пищевым продуктом. В то же время содержание липидов — всего 7 %. Для сравнения, в семенах рапса и подсолнечника на липиды приходится 30–60 % массы, в семенах сои и кукурузы — 15–25 % и выше, в плодах масличной пальмы — 45–70 %. Именно эти культуры в настоящее время используются в качестве основного сырья для производства биотоплива. Поэтому идёт работа с микроводорослями, имеющими более высокое содержание липидов, пока носящая и в нашей стране (включая НИЛВИЭ), и в мире главным образом экспериментальный характер.

Водоросли как источник энергии – преимущества и недостатки

Итак, микроводоросли очень высокопродуктивны. Урожай с одного гектара теоретически может ежемесячно достигать тонн и даже десятков тонн в сухом весе, что в разы и даже на порядки выше, чем у традиционных сельскохозяйственных культур. При этом содержание липидов у ряда видов, таких как ботриококкус брауни (Botryococcus braunii), дуналиелла (Dunaliella), наннохлорис (Nannochloris), стихококкус (Stichococcus) в оптимальных условиях может достигать 80 %. Таким образом, теоретически возможный выход биотоплива в десятки и даже сотни раз выше, чем у используемых в настоящее время масличных культур (табл. 3).

При этом можно избежать конфликта с продовольственно-ориентированным использованием сельскохозяйственных земель. Плантации микроводорослей могут располагаться в естественных и искусственных водоёмах, на неудобных и неиспользуемых землях и морских акваториях, при этом занимая существенно меньшие площади.

Наконец, выращивание традиционных сельскохозяйственных культур на суше сопряжено с большим объёмом выбросов парниковых газов и других загрязняющих веществ. На фоне этого культивирование водорослей выглядит экологически абсолютно безопасным, более того, увеличивающим поглощение углекислого газа и выделение кислорода в атмосферу, что создаёт двойной положительный эффект — получение пищи и топлива, сопровождающееся не загрязнением, а с очищением среды. Проблема, как обычно, состоит в том, что реальные условия, как правило, далеки от оптимальных и теоретически возможных.

В рамках упоминавшейся выше программы ASP в США микроводоросли с большим содержанием липидов культивировались в открытых прудах в штате НьюМексико (юго-запад страны). Средняя продуктивность составляла 20 г/м2 в сутки (что соответствует 73 тонн с одного гектара в год), а в отдельные периоды — до 70 г/м2 в сутки.

Тем не менее, выяснилось, что невозможно в течение длительного времени поддерживать монокультуру микроводорослей в открытой системе, где неизбежно присутствуют и другие организмы. Кроме того, высокая продуктивность водорослей возможна при достаточно большой подкормке азотом, в отсутствие его она падает. В данном случае видно сходство с традиционными сельхозкультурами, также требующими азотных удобрений. В то же время при отсутствии азота содержание жиров в клетках водорослей выше. Итак, задача одновременного роста биопродуктивности и содержания липидов, обусловливающих энергоэффективность культуры, оказывается неразрешимой, и требуется поиск оптимального соотношения того и другого.

Японские исследователи из Научноисследовательского института инновационных технологий Земли (Research Institute of Innovative Technology for the Earth (RITE)), работавшие над этой же задачей в 1991–1999 годы, пришли к сходным результатам.

В 1997–2001 годах крупный исследовательский проект в этом же направлении осуществлялся на Гавайских островах, с микроводорослью хематококкус плювиалис (Haematococcus pluvialis), которую на первой стадии выращивали в закрытых фотобиореакторах, на второй — помещали в условия открытых водоёмов. Средняя продуктивность биомассы культивируемой водоросли составила 38 тонн с 1 га, максимальная превышала 90 тонн, выход биотоплива, соответственно, был 11,4–27,5 тонн с 1 га, что в несколько раз выше, чем у самых продуктивных масличных культур на суше.

В то же время, при выращивании в открытых условиях и биопродуктивность, и содержание липидов оказываются существенно ниже, а выращивание в закрытом биореакторе ведёт к существенно более высоким затратам.

В переводе на энергетический эквивалент получается, что для получения 1 л биодизеля из микроводорослей требуются энергозатраты, эквивалентные 0,56– 0,81 л топлива (в среднем около 0,7 л), включающие электроэнергию, питательные вещества и другое. В данном случае, помимо экономической составляющей, присутствует и экологическая — поскольку энергия, идущая на выращивание водорослей, добывается уже из невозобновляемых источников и экологически безопасной не является, то есть экологический эффект производства биодизеля в значительной степени обесценивается. Кроме того, существует отрицательный экологический эффект, связанный с азотной подкормкой и водопотреблением плантаций водорослей, то есть такой же, как и в традиционном сельскохозяйственном производстве. Кроме того, речь идёт о затратах без учёта инвестиций, оплаты труда, других издержек, связанных, в частности, с транспортировкой топлива.

Расчёты затрат на получение биодизеля из микроводорослей дают существенно различающиеся результаты, в очень высокой степени зависящие от вида и способа производства водоросли, природных условий и других факторов. В частности, по расчётам участников программы ASP, стоимость 1 л «водорослевого» биодизеля составила 26–86 центов ($ 39–127 за баррель), в гавайском проекте — около 40 центов ($ 56 за баррель), а исследователи из Британской Колумбии (Канада) дают существенно более высокие цифры — от $ 2,5 до $ 7 за 1 л.

По нашим расчётам, инвестиционные затраты на обустройство 1 га водорослевых плантаций в открытых условиях, включая монтаж культиваторов, оборудование для приготовления питания, перемешивания, сушки и фильтрации биомассы и другое, составят около $ 50 тыс.

Операционные затраты в крайне высокой степени зависят от местных условий, начиная от климата и заканчивая уровнем оплаты труда. Их можно оценить в $ 50–100 тыс. в год, но в условиях России они могут быть в несколько раз выше, в частности, из-за существенно большего по сравнению с субтропиками и тропиками расхода электроэнергии и короткого вегетационного периода при выращивании в открытых условиях.

Это вполне приемлемые условия при выращивании водорослей в качестве пищевых и лекарственных добавок, но как источник топлива они оказываются слишком дорогими.

При данных затратах, даже в случае сбора с 1 га 30 тонн биомассы ежегодно, каждая тонна будет обходиться в $ 1600– 3200 ($ 1,6–3,2 за 1 кг), даже без учёта первоначальных инвестиций и затрат на получение собственно биотоплива. Это близко к цифрам, приводимым канадскими исследователями.

Перспективы водорослевой энергетики

Интерес к водорослям в качестве источника биотоплива закономерен при ценах нефти в $ 100 за баррель и выше, как было во второй половине 2000-х годов. В настоящее время ситуация далеко не столь благоприятна, и вряд ли можно предсказать, изменится ли она в лучшую для возобновляемой энергетики сторону в обозримом будущем.

В настоящее время идёт и будет продолжаться поиск путей снижения затрат на производство биоэнергии из водорослей. Помимо прочего, он включает поиск, отбор и выведение культур водорослей с повышенным содержанием липидов, более продуктивных и жизнестойких.

В качестве же пищевого продукта (что тоже можно считать источником энергии) водоросли уже используются и имеют очевидные перспективы. Вероятно, как и в случае с торфом, в дальнейшем целесообразно комплексное использование выращиваемых водорослей с созданием целого спектра пищевых, лекарственных, энергетических продуктов на выходе. Для России это также могло бы стать одним из направлений среднеи долгосрочного инновационного роста и создания высокотехнологичной экономики на отечественной интеллектуальной и производственной базе. опубликовано econet.ru 

 

econet.ru

Водоросли

Особенности водорослей

Водоросли относят к низшим растениям. Их более 30 тысяч видов. Среди них есть как одноклеточные, так и многоклеточные формы. Некоторые водоросли имеют очень большие размеры (несколько метров в длину).

Название «водоросль» говорит о том, что эти растения обитают в воде (в пресной и морской). Однако водоросли можно встретить во многих влажных местах. Например, в почве и на коре деревьев. Некоторые виды водорослей способны, как и ряд бактерий, обитать на ледниках и в горячих источниках.

Водорослей относят к низшим растениям, так как у них нет настоящих тканей. У одноклеточных водорослей тело состоит из одной клетки, некоторые водоросли образуют колонии клеток. У многоклеточных водорослей тело представлено слоевищем (другое название — таллом).

Поскольку водоросли относят к растениям, то все они являются автотрофами. Кроме хлорофилла клетки многих водорослей содержат красные, синие, бурые, оранжевые пигменты. Пигменты находятся в хроматофорах, которые имеют мембранную структуру и выглядят как ленты или пластинки и т. п. В хроматофорах нередко откладывается запасное питательное вещество (крахмал).

По содержанию и преобладанию того или иного пигмента, придающего окрас таллому, водоросли делят на зеленые, красные и бурые.

Размножение водорослей

Водоросли размножаются как бесполым, так и половым путем. Среди типов бесполого размножения преобладает вегетативное. Так, одноклеточные водоросли размножаются делением их клетки надвое. У многоклеточных форм происходит фрагментация слоевища.

Однако бесполое размножение у водорослей может быть не только вегетативным, но и с помощью зооспор, которые образуются в зооспорангиях. Зооспоры представляют собой подвижные клетки с жгутиками. Они способны активно плавать. Через какое то время зооспоры отбрасывают жгутики, покрываются оболочкой и дают начало водоросли.

У ряда водорослей наблюдается половой процесс, или конъюгация. При этом между клетками разных особей происходит обмен ДНК.

При половом размножении у многоклеточных водорослей образуются мужские и женские гаметы. Они образуются в специальных клетках. При этом на одном растении могут образовываться гаметы обоих типов или только одного (только мужские, или только женские. После выхода гаметы сливаются с образованием зиготы. Чаще всего зигота превращается в спору, которая какое-то время находится в стадии покоя, переживая таким образом неблагоприятные условия. Обычно после зимовки споры водорослей дают начало новым растениям.

Одноклеточные водоросли

Хламидомонада

Хламидомонада обитает в загрязненных органикой мелких водоемах, лужах. Хламидомонада является одноклеточной водорослью. Ее клетка имеет овальную форму, но один из концов слегка заострен и на нем находится пара жгутиков. Жгутики позволяют достаточно быстро передвигаться в воде ввинчиванием.

Название этой водоросли происходит от слов «хламида» (одежда древних греков) и «монада» (простейший организм). Клетка хламидомонады покрыта пектиновой оболочкой, которая прозрачна и неплотно прилегает к мембране.

В цитоплазме хламидомонады есть ядро, светочувствительный глазок (стигма), крупная вакуоль, содержащая клеточный сок, а также пара мелких пульсирующих вакуолей.

Хламидомонада обладает способностью двигаться по направлению к свету (благодаря стигме) и кислороду. Т.е. она обладает положительным фототаксисом и аэротаксисом. Поэтому хламидомонада обычно плавает в верхних слоях водоемов.

Хлорофилл находится в большом хроматофоре, который имеет вид чаши. Здесь протекает процесс фотосинтеза.

Несмотря на то, что хламидомонада как растение способна к фотосинтезу, она также может поглощать готовые органические вещества, присутствующие в воде. Это ее свойство используется человеком для очистки загрязненных вод.

В благоприятных условиях хламидомонада размножается бесполым способом. При этом ее клетка отбрасывает жгутики и делится, образуя 4 или 8 новых клеток. В результате хламидомонада достаточно быстро размножается, что приводит к так называемому цветению воды.

В неблагоприятных условиях (холод, засуха) хламидомонада под своей оболочкой образует гаметы в количестве 32 или 64 штук. Гаметы выходят в воду и сливаются попарно. В результате образуются зиготы, которые покрываются плотной оболочкой. В таком виде хламидомонада переносит неблагоприятные условия среды. Когда условия становятся благоприятными (весной, период дождей), зигота делится, образуя четыре клетки-хламидомонады.

Хлорелла

Одноклеточная водоросль хлорелла обитает в пресных водоемах и влажной почве. Хлорелла имеет шаровидную форму без жгутиков. Также у нее нет светочувствительного глазка. Таким образом, хлорелла неподвижна.

Оболочка хлореллы плотная, в ее состав входит целлюлоза.

В цитоплазме присутствует ядро и хроматофор с хлорофиллом. Фотосинтез протекает весьма интенсивно, поэтому хлорелла выделяет много кислорода и производит много органического вещества. Также как хламидомонада, хлорелла способна усваивать готовые органические вещества, присутствующие в воде.

Для хлореллы характерно бесполое размножение делением.

Плеврококк

Плеврококк образует зеленый налет на почве, коре деревьев, скалах. Представляет собой одноклеточную водоросль.

Клетка плеврококка имеет ядро, вакуоль, хроматофор в виде пластинки.

Плеврококк не образует подвижные споры. Размножается путем деления клетки надвое.

Клетки плеврококка могут образовывать небольшие группы (по 4-6 клеток).

Многоклеточные водоросли

Улотрикс

Улотрикс представляет собой зеленую многоклеточную нитчатую водоросль. Обычно обитает в реках на поверхностях расположенных недалеко от поверхности воды. Улотрикс имеет ярко-зеленый цвет.

Нити улотрикса не ветвятся, одним концом они прикрепляются к субстрату. Каждая нить состоит из ряда небольших клеток. Нити растут за счет поперечного деления клеток.

Хроматофор у улотрикса имеет вид незамкнутого кольца.

В благоприятных условиях некоторые клетки нити улотрикса образуют зооспоры. У спор по 2 или 4 жгутика. Когда плавающая зооспора прикрепляется к предмету, она начинает делится, образуя нить водоросли.

В неблагоприятных условиях улотрикс способен размножаться половым путем. В некоторых клетках его нити образуются гаметы, имеющие по два жгутика. После выхода из клеток они попарно сливаются, образуя зиготы. В последствие зигота разделится на 4 клетки, каждая из которых даст начало отдельной нити водоросли.

Спирогира

Спирогира, также как улотрикс, является зеленой нитчатой водорослью. В пресных водоемах именно спирогира встречается чаще всего. Скапливаясь, она образует тину.

Нити спирогиры не ветвятся, состоят из цилиндрических клеток. Клетки покрыты слизью и имеют плотные целлюлозные оболочки.

Хроматофор спирогиры выглядит как спирально закрученная лента.

Ядро спирогиры подвешено в цитоплазме на протоплазменных нитях. Также в клетках есть вакуоль с клеточным соком.

Бесполое размножение у спирогиры осуществляется вегетативным способом: путем деления нити на фрагменты.

У спирогиры наблюдается половой процесс в форме конъюгации. При этом две нити располагаются рядом, между их клетками образуется канал. По этому каналу содержимое из одной клетки переходит в другую. После этого образуется зигота, которая, покрывшись плотной оболочкой, перезимовывает. Весной из нее вырастает новая спирогира.

Значение водорослей

Водоросли активно участвуют в круговороте веществ в природе. В результате фотосинтеза они выделяют большое количество кислорода и связывают углерод в органические вещества, которыми питаются животные.

Водоросли участвуют в образовании почвы и формировании осадочных пород.

Многие виды водоросли используются человеком. Так из морских водорослей получают агар-агар, йод, бром, калийные соли, клеящие вещества.

В сельском хозяйстве водоросли используются как кормовая добавка в рацион животных, а также как калийное удобрение.

С помощью водорослей очищают загрязненные водоемы.

Некоторые виды водорослей используются человеком в пищу (ламинария, порфира).

biology.su

Бурые водоросли — Википедия

Бурые водоросли (лат. Phaeophyceae) — класс из отдела охрофитовых водорослей. В жизненном цикле всех представителей присутствуют многоклеточные стадии. Бурые водоросли в хроматофорах содержат бурый пигмент фукоксантин (C40H56O6), который маскирует остальные пигменты.

Бурые водоросли в подавляющем большинстве принадлежат к морским биотопам, их заросли встречаются в литоральной и сублиторальной зонах, до глубин 40–100 м. Представителей класса Phaeophyceae можно увидеть во всех морях земного шара, однако наибольшая их концентрация — в приполярных и умеренных широтах, где они доминируют на глубине от 6 до 15 м. Обычно бурые водоросли растут прикреплённые к скалам и камням разной величины, и только в тихих местах и на большой глубине они могут удерживаться на створках моллюсков или гравии. Среди всего разнообразия бурых водорослей представители только 4 родов Heribaudiella, Pleurocladia, Bodanella и Sphacelaria могут обитать в пресных водоемах. Некоторые морские виды могут попадать в прибрежные солоноватые воды, где нередко являются одним из основных компонентов флоры солончаковых болот.

Представители группы играют важную роль в морских экосистемах как один из основных источников органической материи; также, их заросли создают уникальную среду обитания для многих морских организмов. Например, представители рода Macrocystis, которые могут достигать 60 м длиной, формируют большие подводные леса у побережий Америки. Виды рода Sargassum создают окружающую среду тропических вод Саргассова моря, крупнейшего места произрастания бурых водорослей в тропиках. Много видов, за исключением отряда Fucales, можно увидеть в зарослях на подводных скалах вдоль побережья.

По системе живого мира, которая была предложена S. Adl и коллегами в 2005 году[1], бурые водоросли относятся к царству Chromalveolata Adl et al. отдела Heterokontophyta Hoek класса Phaeophyceae Kjellman.

По системе Adl и коллег, царство Chromalveolata отображает отдельную ветвь развития эукариотических организмов, отделившуюся на древе жизни вследствие исключительного эндосимбиотического события между предковой фотосинтезирующей красной водорослью и фаготрофным эукариотом. С последующей эволюцией некоторые линии живых организмов в царстве Chromalveolata потеряли пластиды, тогда как другие — вторично получили.

Группа Страменопилов объединяет как организмы, способные к фотосинтезу (например диатомей), так и тех, которые потеряли пластиды и питаются гетеротрофно (в частности, это разные группы грибовидных организмов). Всех их объединяет наличие в монадных клетках двух морфологически различных жгутиков. Жгутик, направленный вперёд, — перистый, покрытый двумя рядами специфических трёхчленных волосков — ретронем (мастигонем). Направленный назад жгутик имеет гладкую поверхность. Также общим признаком для всех страменопилов является наличие трубчатых гребней в митохондриях. Кроме класса Phaeophyceae, к группе водорослей-гетероконтов относятся следующие классы водорослей: Chrysophyceae (золотистые), Eustigmatophyceae (эвстигматофициевые), Dictyochophyceae (силикофлагеллаты), Bacillariophyceae (диатомеи), Raphidophyceae (хлоромонады), Xanthophyceae (жёлто-зелёные) и некоторые другие.

Филогенез[править | править код]

Несмотря на то что с начала XX века существовало понимание бурых водорослей как целостной, монофилетической группы по однородному пигментному составу, одинаковым продуктам ассимиляции и схожему строению подвижных стадий, вопрос их филогенеза оставался нерешённым. Сравнивая жгутиковый аппарат и пигментный состав бурых водорослей с золотистыми, Шерффель, а также много других альгологов, высказывались за филогенетическое родство этих двух таксонов[2].

Но уже в конце XX века, благодаря молекулярно-биологическим методам анализа ДНК было установлено, что бурые водоросли в наибольше степени родственны с группой жёлто-зелёных водорослей (класс Xanthophyceae)[3]. В 1998 году Bailey с коллегами, также основываясь на молекулярных исследованиях ДНК, описал новый небольшой класс водорослей-страменопилов — Phaeothamniophyceae — представители которого, вероятно, и являются прямыми предками бурых водорослей[4].

Бурые водоросли являются сравнительно молодой группой организмов. По разным данным, время их возникновения — от 150[5] до 200[6] миллионов лет назад. С точки зрения эволюции, бурые водоросли являются уникальной группой живых организмов, поскольку они принадлежат к тому небольшому количеству линий развития эукариотов, которым, независимо от других, удалось развить настоящий многоклеточный план строения тела.

По современной системе, основываясь на молекулярных, морфологических, онтогенетических критериях, а также на основе различий в ультраструктурном строении клеток, в классе Phaeophyceae выделяют 18 отрядов[7]:

Типы морфологических структур тела и строение талломов[править | править код]

В пределах класса представлены нитчатый, разнонитчатый и настоящий тканевый типы структур тела водорослей. Все бурые водоросли, за исключением некоторых видов рода Sargassum, ведут прикреплённый образ жизни. Органами прикрепления служат ризоиды или специализированные базальные диски.

У представителей с нитчатой структурой тела талломы созданы системой однорядных разветвлённых нитей. Разнонитчатые водоросли имеют вид довольно толстых шнуров. Такие шнуры имеют одно- или многоосевое строение. Среди бурых водорослей есть представители с эфемерными, однолетними и многолетними талломами. Значительное влияние на продолжительность существования таллома имеют экологические факторы.

Desmarestia ligulata — бурая водоросль с трихоталлическим типом роста талломов.

Разнообразная форма талломов характерна для представителей с тканевым типом строения тела. Форма талломов таких водорослей может быть в виде кожуры, шарообразной, мешкоподобной, пластинчатой, в виде куста с ребристыми листообразными пластинками. Талломы некоторых представителей могут иметь специальные воздушные пузырьки — пневматофоры, которые удерживают «ветви» в вертикальном положении. В простейших случаях таллом сформирован двумя тканями: корой, которая образована мелкими клетками с окрашенными хлоропластами, и сердцевиной, которая состоит из больших бесцветных клеток, которые выполняют проводящую и запасающую функции.

У более высокоорганизованных представителей таллом образован четырьмя типами тканей: корой, меристодермой, промежуточной тканью и сердечником. Меристодерма — это поверхностная ткань, которая выполняет защитную и репродуктивную функции. Её клетки обычно мелкие и способны к активному делению. В клетках промежуточной ткани накапливаются продукты ассимиляции.

Типы роста[править | править код]

Для талломов бурых водорослей характерно 6 типов роста:

  1. Диффузный — большинство клеток растительного организма способны к делению (напр., Ectocarpus, Petalonia).
  2. Верхушечный — к делению клетки способны только на верхушках талломов (напр., Sphacelaria, Dictyota).
  3. Трихоталлический — клетки делятся, формируя волоски над и под поверхностью талломов (напр., Cutleria, Desmarestia).
  4. Промеристематический — апикальная клетка не способна к делению, но контролирует разделение меристематических клеток, расположенных под ней (напр., Fucus).
  5. Интеркалярный — в талломе имеется меристематическая зона, клетки которой, делясь, нарастают вверх и вниз от неё (напр., Laminaria).
  6. Меристодерматический — рост обеспечивается специализированной поверхностной тканью, клетки которой делятся параллельно и перпендикулярно поверхности таллома (напр., Sargassum).

Цитологические и биохимические особенности строения клеток[править | править код]

Клеточные покровы бурых водорослей образованы оболочками, которые состоят из внутреннего каркасного слоя, образованного микрофибрилами целлюлозы, и внешнего аморфного, который содержит в основном соли альгиновой кислоты, пектиновые вещества и белки. Соли альгиновой кислоты — альгинаты — в водных растворах способны к образованию гелей.

Ещё одним компонентом клеточных оболочек бурых водорослей являются фукоиданы. По своей химической природе они являются сульфатированными полисахаридами сложного строения. Основной мономер фукоиданов — этерифицированные серной кислотой остатки α-L-фукозы. Кроме неё, в состав фукоиданов могут также входить и другие моносахариды. Подобные полисахариды не встречаются ни в одной другой группе водорослей, однако похожие на них соединения были обнаружены у морских беспозвоночных (морские ежи и голотурии)[8].

Благодаря большому количеству альгинатов и пектиновых веществ, клеточные оболочки бурых водорослей способны сильно слизьневеть и находиться в коллоидном (гелеобразном) состоянии.

Клетки бурых водорослей одноядерные. Ядро имеет типичное эукариотическое строение, внутри него имеется большое, хорошо заметное ядрышко. Как и у многих других классов водорослей-страменопилов, которым родственны бурые водоросли, внешняя оболочка ядра переходит в хлоропластный эндоплазматический ретикулум (ЭПР).

Хлоропласты мелкие, многочисленные. Имеют дискообразный вид. У большинства бурых водорослей пиреноиды в хлоропластах очень мелкие, почти незаметные в световой микроскоп. Пластиды бурых водорослей вторично-симбиотические, родофитного типа, окружённые четырьмя мембранами. Две внешние образуют хлоропластный ЭПР, две внутренние являются собственно мембранами пластиды. Между внешними и внутренними мембранами сохраняется перипластидное пространство. Тилакоиды в пластиде преимущественно располагаются лентами по три, на периферии расположена опоясывающая ламелла.

Пигменты пластид являются хлорофиллами а и c, β— и ε-каротинами, а также специфическими ксантофиллами — фукоксантином и виолаксантином. Именно последние и обуславливают характерный буро-желтый цвет талломов водорослей из класса Phaeophyceae. Кроме вышеуказанных соединений, в хлоропластах бурых водорослей также присутствуют другие ксантофиллы: диатоксантин, диадиноксантин, зеаксантин, антераксантин и неоксантин.

За пределами хлоропласта, в виде цитоплазматических пластинок, окружённых собственными мембранами, откладывается основной запасной продукт бурых водорослей — специфический полисахарид ламинарин. Кроме ламинарина, запасным продуктом у бурых водорослей может служить шестиатомный спирт D-маннитол. Так, у некоторых видов ламинарий его концентрация осенью может достигать до 25 % сухой массы.

Ещё одной особенностью бурых водорослей является наличие в их клетках особых вакуолей — физод. В световой микроскоп физоды выглядят как небольшие светопреломляющие включения, в молодых клетках — бесцветные, у стареющих — жёлтого или бурого цвета. Диаметр физод может составлять от 0,1 до 10 мкм, в среднем — 1–4 мкм. На сегодня достоверно установлено, что содержимое физод является совокупностью полифенольных соединений отдельного класса танинов, производных флороглюцина — флоротанинов.

Жгутиковые стадии у бурых водорослей являются исключительно гаметами и зооспорами (у бурых водорослей отсутствуют движущиеся вегетативные клетки). Такие клетки имеют два жгутика, как и остальные страменопилы. Длинный жгутик — порчатый, покрытый трёхчленными мастигонемами, а короткий — гладкий. Также у монадных клеток, в хлоропласте имеется глазок (стигма), состоящий из 40-80 липидных глобул. Глазок функционирует как вогнутое зеркало, фокусируя свет на основе жгутика, где содержится фоторецептор, который отвечает за фототаксисы гамет или зооспор бурых водорослей.

У бурых водорослей наблюдаются все типы размножения: вегетативное, бесполое, а также половое. Вегетативное размножение происходит при случайной фрагментации талломов, и только род Sphacelaria формирует особые выводковые почки.

Неполовое размножение подвижными зооспорами свойственно подавляющему большинству бурых водорослей, однако у представителей порядков Dictyotales и Tilopteridales можно наблюдать размножение неподвижными тетра- и моноспорами.

Местом образования зооспор служат одно- или многогнёздные зооспорангии. Это значительно увеличенные в размерах клетки, содержимое которых, после серии разделов ядра, распадается на большое количество зооспор. Обычно первое деление ядра является редукционным, поэтому новообразованные зооспоры имеют гаплоидный набор хромосом. Попав в окружающую среду, зооспоры переходят к активному движению, но уже через несколько минут они оседают на субстрат и сбрасывают жгутики. Часть зооспор прорастает в мужской гаметофит, часть — в женский.

Половой процесс у бурых водорослей представлен изо- и оогамией, изредка случается гетерогамия.

Схема диплофазного жизненного цикла на примере Sargassum sp.

Для всего многообразия бурых водорослей, кроме представителей отряда Fucales, характерен жизненный цикл с чередованием гаплоидного (гаметофит) и диплоидного (спорофит) поколений. Тип жизненного цикла, в котором гаметофит морфологически не отличается от спорофита, называют изоморфным. В гетероморфном жизненном цикле гаметофит бурых водорослей обычно имеет микроскопические размеры и выглядит как система разветвлённых нитей. Продуктами гаметофита являются мужские и женские гаметы, которые сливаясь, дают начало новому спорофиту.

Водоросли из отряда Fucales имеют диплофазный жизненный цикл, без смены поколений. У них отсутствуют зооспоры, мейоз происходит при образовании гамет, а половой процесс представлен преимущественно оогамией. Мужские и женские гаметангии образуются на специализированных плодовитых окончаниях талломов — рецептакулах. Внутри рецептакулов содержатся большие полузакрытые полости, где развиваются мужские антеридии и женские оогонии. Созревшие оогонии и антеридии высвобождают яйцеклетки и сперматозоиды в окружающую среду, где и происходит процесс оплодотворения. Зигота, которая образовалась, сразу же начинает делиться и прорастать в новый диплоидный таллом.

Важную роль в половом размножении бурых водорослей играют феромоны. У бурых водорослей они выполняют две важные функции. Во-первых — это стимуляция высвобождения мужских гамет, а во-вторых, они ответственны за привлечение сперматозоидов к женским гаметам или яйцеклеткам. По химической природе — это летучие, гидрофобные, линейные или циклические непредельные углеводороды. На сегодня выявлено около десятка феромонов в разных родов и видов бурых водорослей.

По состоянию на 2013 год в Красном списке Международного союза охраны природы (МСОП) есть 15 видов бурых водорослей. Все водоросли, занесённые в список МСОП, растут у побережья Галапагосских островов. Четыре из них получили наивысшую категорию уязвимости «В критической опасности». По одному виду имеют категории «В опасности» и «В уязвимом положении», 9 видов получили категорию «Виды с неясным статусом», что свидетельствует о недостаточной исследованности динамики популяций этих видов. МСОП определяет климатические изменения (в частности, температурный феномен Эль-Ниньо) и связанное с ними чрезмерное размножение организмов-фитофагов как основные негативные факторы, влияющие на численность популяций бурых водорослей[9].

Издавна жители побережий, особенно в Восточной Азии, употребляли их в пищу, часто как основу рациона; сегодня бурые водоросли являются, прежде всего, сырьем для получения альгинатов, используемых в пищевой, текстильной, фармацевтической и биотехнологической отраслях промышленности. В перспективе бурые водоросли и их компоненты также рассматриваются как источник новых лекарств[10].

Пищевая ценность[править | править код]

Как пищевые продукты наибольшей популярностью в некоторых странах (Китай, Япония и Южная Корея) пользуются водоросли комбу (Saccharina japonica) и вакамэ (Undaria pinnatifida). Эти два вида бурых водорослей издавна являются объектами массовой аквакультуры в Китае и Южной Корее. Кроме вышеуказанных видов в Восточной Азии употребляются также водоросли хиджики (Sargassum fusiforme) и араме (Eisenia bicyclis)[11].

С точки зрения диетологии, бурые водоросли — низкокалорийная еда с низким содержанием жиров, обогащённая углеводами, белками и, особенно, минералами. По сравнению с обычными овощами и фруктами, бурые водоросли имеют значительно большее содержание макро- и микроэлементов, таких как натрий, калий, кальций, магний, железо, селен, кобальт, марганец[12]. Также бурые водоросли являются одним из главных источников йода, недостаток которого в организме человека приводит к серьёзным нарушениям развития, снижению трудоспособности, кретинизму. В последнее время доказано, что употребление бурых водорослей и их производных является одним из лучших методов групповой и индивидуальной профилактики йододефицита и йододефицитных заболеваний[13]. Как пищевой продукт, бурые водоросли богаты клетчаткой, в роли которой выступают коллоидные компоненты их клеточных оболочек — альгинаты. Соли альгиновой кислоты также имеют значительные радиационнозащитные свойства[14].

Значение для науки[править | править код]

В 1907 году японский биохимик Кикунэ Икэда, исследуя вкусовые свойства традиционных блюд японской кухни, приготовленных из бурых водорослей комбу, описал новый тип вкусовых ощущений — умами. Из 40 кг Saccharina japonica ученый выделил 30 г глутаминовой кислоты, которая оказалась ответственной за характерный вкус. В 1908 году компания Икэды начала промышленный выпуск новой приправы — глутамата натрия[15].

В 2010 году международной командой учёных был секвенирован геном бурой водоросли Ectocarpus siliculosus. Благодаря этому стало возможным использовать этот организм как модельный объект для изучения вопросов, связанных с биологией бурых водорослей, в частности возникновения многоклеточности[16].

  • Белякова Г. А. Водоросли и грибы // Ботаника: в 4 тт. / Белякова Г. А., Дьяков Ю. Т., Тарасов К. Л. — М.: Издательский центр «Академия», 2006. — Т. 2. — 320 с. — 3000 экз. — ISBN 5-7695-2750-1.
  1. Adl, S. M.; et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists (англ.) // Journal of Eukaryotic Microbiology : journal. — 2005. — Vol. 52, no. 5. — P. 399—451. — doi:10.1111/j.1550-7408.2005.00053.x. — PMID 16248873.
  2. ↑ Д. К. Зеров. Очерк о филогении бессосудистых растений. — К.: Научная мысль, 1972. — 316 с.
  3. Ariztia, E. V.; Andersen, R. A.; Sogin, M. L. A new phylogeny of chromophyte algae using 16S-like rRNA sequences from Mallomonas papillosa (Synurophyceae) and Tribonema aequale (Xanthophyceae) (англ.) // Journal of Phycology (англ.)русск. : journal. — 1991. — Vol. 27, no. 3. — P. 428—436. — doi:10.1111/j.0022-3646.1991.00428.x.
  4. ↑ Bailey, J.C., R.R. Bidigare, S.J. Christensen and R.A. Andersen. 1998. Phaeothamniophyceae classis nova.: a new lineage of chromophytes based upon photosynthetic pigments, rbcL sequence analysis and ultrastructure. Protist 149: 245—263.
  5. Medlin, L. K.; et al. Phylogenetic relationships of the 'golden algae' (haptophytes, heterokont chromophytes) and their plastids (англ.) // Plants Systematics and Evolution : journal. — 1997. — Vol. 11. — P. 187—219.
  6. Lim, B.-L.; Kawai, H.; Hori, H.; Osawa, S. Molecular evolution of 5S ribosomal RNA from red and brown algae (англ.) // Japanese Journal of Genetics : journal. — 1986. — Vol. 61, no. 2. — P. 169—176. — doi:10.1266/jjg.61.169.
  7. ↑ Guiry, M.D. & Guiry, G.M. 2013. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway
  8. ↑ А. И. Усов, М. И. Билан. Фукоиданы — сульфатированые полисахариды бурых водорослей. // Успехи химии. — 2009. Том 78. — с. 846—862.
  9. ↑ Сайт Красного списка МСОП (недоступная ссылка)
  10. ↑ Albertus J. Smith. Medicinal and pharmaceutical uses of seaweed natural products: A review. // Journal of Applied Phycology. — 2004. Vol. 16. — pp. 245 − 262.
  11. ↑ Dennis J. McHugh. A Guide to the Seaweed Industry. — Food and Agriculture Organization of the United Nations, 2003. — 106 p.
  12. ↑ P. Ruperez. Mineral content of edible marine seaweeds. // Food Chemistry. — 2002. No. 79. — pp. 23 — 26.
  13. ↑ В. Н. Корзун, А. М. Парац, А. П. Матвиенко. Проблемы и перспективы профилактики йоддефицитных заболеваний у населения Украины. // Эндокринология. — 2006. Т.11, № 2. — с. 187—193.
  14. ↑ В. Н. Корзун, В. И. Сагло, А. М. Парац. Питание в условиях широкомасштабной аварии и её последствиях. // Украинский медицинский журнал. — 2002. № 6 (32). — с. 99 — 105.
  15. ↑ Вещество с умами: вкус. — Популярная механика
  16. ↑ J. M. Cock et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. // Nature — 2010.

ru.wikipedia.org

Водоросли [Algae] — строение, размножение, питание, виды, среда обитания, формы, классы, царство, вики — Wiki-Med

Основная статья: Протисты

Содержание (план)

Водоросли (Algae) — это протисты, способные к фотосинтезу.

К водорослям относятся одноклеточные и мно­гоклеточные организмы, способные осуществлять фотосин­тез, т. к. в их клетках содержатся хлоропласты. Водоросли имеют разные форму и размеры. Они живут преимуществен­но в воде до глубин, куда проникает свет.

Среди водорослей встречаются как микроскопически ма­лые, так и гигантские, достигающие длины свыше 100 м (на­пример, длина бурой водоросли макроцистиса грушевидного 60-200 м).

Строение водорослей

В клетках водорослей содержатся специальные органо­иды — хлоропласты, которые осуществляют фотосинтез. У разных видов они имеют различную форму и размеры. Не­обходимые для фотосинтеза минеральные соли и углекислый газ водоросли поглощают из воды всей поверхностью тела и выделяют в окружающую среду кислород.

В пресноводных и морских водоемах широко распростра­нены многоклеточные водоросли. Тело мно­гоклеточных водорослей называется слоевищем. Отличи­тельная черта слоевища — сходство строения клеток и от­сутствие органов. Все клетки слоевища устроены поч­ти одинаково, и все части тела выполняют одинаковые функции.

Размножение водорослей

Размножаются водоросли бесполым и половым способа­ми.

Бесполое размножение

Одноклеточные водоросли размножаются, как правило, делением. Бесполое размножение водорослей осуществляется также посредством специальных клеток — спор, покры­тых оболочкой. Споры многих видов имеют жгутики и спо­собны самостоятельно передвигаться.

Половое размножение

Для водорослей характерно и половое размножение. В процессе полового размножения участвуют две особи, каждая из которых передает свои хромосомы потомку. У одних видов эта передача осуществляет­ся при слиянии содержимо­го обычных клеток, у дру­гих слипаются специальные половые клетки — гаметы.

Среда обитания водорослей

Водоросли живут преимущественно в воде, заселяя мно­гочисленные морские и пресноводные водоемы, как крупные, так и небольшие, временные, как глубокие, так и мелкие.

Водоросли населяют водоемы лишь на тех глубинах, на которые проникает солнечный свет. Немногие виды водорос­лей обитают на камнях, коре деревьев, почве. Для обитания в воде водоросли имеют ряд при­способлений.

Приспособление к среде обитания

Для орга­низмов, обитающих в океанах, морях, реках и других водо­емах, вода является средой обитания. Условия этой среды заметно отличаются от наземных условий. Для водоемов ха­рактерны постепенное ослабление освещенности по мере по­гружения на глубину, колебания температуры и солености, низкое содержание кислорода в воде — в 30-35 раз меньше, чем в воздухе. Кроме того, для морских водорослей большую опасность представляет движение воды, особенно в прибреж­ной (приливно-отливной) зоне. Здесь водоросли подвергают­ся воздействию таких мощных факторов, как прибой и уда­ры волн, отливы, приливы (рис. 39).

Выживание водорослей в таких жестких условиях водной среды возможно благодаря специальным приспособлениям.

  • При недостатке влаги оболочки клеток водорослей зна­чительно утолщаются и пропитываются неорганическими и органическими веществами. Это защищает организм водорос­лей от высыхания в период отлива.
  • Тело морских водорослей прочно прикреплено к грун­ту, поэтому во время прибоя и ударов волн они сравнитель­но редко отрываются от грунта.
  • У глубоководных водорос­лей имеются более крупные хлоропласты с высоким содержа­нием хлорофилла и других фо­тосинтезирующих пигментов.
  • У некоторых водорослей есть специальные пузыри, запол­ненные воздухом. Они, как по­плавки, удерживают водоросль у поверхности воды, где есть возможность улавливать макси­мальное количество света для фотосинтеза.
  • Выход спор и гамет у морских водорослей совпадает с приливом. Развитие зиготы происходит сразу после ее обра­зования, что не позволяет отливу унести ее в океан.

Классификация водорослей

  • Царство Бактерии
  • Эукариоты, или Ядерные
    • Надцарство Архепластиды
      • Царство Глаукофиты
      • Царство Красные водоросли
      • Царство Зеленые водоросли
      • Царство Харовые водоросли
    • Надцарство Экскаваты
      • Царство Дискобы
        • Тип Эвгленозои
          • Класс Эвгленовые
    • Надцарство Ризарии
      • Царство Церкозои
        • Тип Хлорарахниофитовые водоросли
    • Надцарство Страменопилы
      • Царство Охрофитовые водоросли
        • Тип Диатомовые водоросли
        • Тип Желто-зеленые водоросли
        • Тип Бурые водоросли
        • Тип Золотистые водоросли
    • Надцарство Альвеоляты
      • Царство Динофлагелляты
    • Система Хакробии
      • Царство Криптофитовые водоросли
      • Царство Гаптофитовые водоросли
    Материал с сайта http://wiki-med.com

Представители водорослей

Бурые водоросли

Ламинария

В морях обитают водоросли, имеющие желто-бурую окраску. Это бурые водорос­ли. Их окраска обусловлена высоким со­держанием в клетках особых пигментов.

Тело бурых водорослей имеет вид ни­тей или пластин. Типичный предста­витель бурых водорослей — ламинария (рис. 38). Она имеет пластинча­тое тело длиной до 10-15 м, которое с помощью ризоидов прикрепляет­ся к субстрату. Размножается лами­нария бесполым и половым спо­собами.

Фукус

На мелководье густые заросли обра­зует фукус. Его тело более расчленен­ное, чем у ламинарии. В верхней ча­сти слоевища имеются специальные пузырьки с воздухом, благодаря чему тело фукуса удерживается на поверх­ности воды.

Значение водорослей

см. Значение водорослей

На этой странице материал по темам:
  • к группе водоросли относятся

  • отличия и общие у одноклеточных водрослей и многоклеточных

  • известно,что водоросли населяют моря,реки и

  • бурые водоросли по способу питания

  • многие водоросли обитают в прибрежной зоне морей и океанов

Вопросы к этой статье:
  • Какие организмы относятся к водорослям?

  • Известно, что во­доросли населяют моря, реки и озера лишь на тех глубинах, на которые проникает солнечный свет. Как это можно объяснить?

  • Что общего и отличительного в строении одно­клеточных и многоклеточных водорослей?

  • В чем заключается основное отличие бурых водорослей от других водорослей?

  • Сравните группы протистов (гетеротрофные, автотрофные и автогетеротрофные). Какие признаки общие для всех групп и отличительные для каждой группы?

  • Какие приспособления к обитанию в воде имеются у водорослей?

  • Многие водоросли обитают в приливно-отливной зоне. Почему во вре­мя отлива их не уносит в море?

  • Почему многие морские водоросли обитают на глубине не более 200 м, в то время как другие организмы живут намного глубже?

wiki-med.com

Строение водорослей, подготовка к ЕГЭ по биологии

Водоросли относятся к низшим растениям, наиболее примитивным: у них отсутствует разделение организма на стебель, корень и листья. Спешу заметить, что термин "низшие растения" - отжившее понятие, использовавшееся в ботанике до второй половины XX века.

Современная биология не считает дифференциацию тканей определяющим различием, сейчас существенным считают фундаментальные различия в строение клеток, обмене веществ. Тем не менее, во многих устаревших пособиях этот термин используется, и я обязан предупредить вас о нем.

Наука о водорослях называется альгология (от лат. alga — морская трава, водоросль и греч. λόγος — учение).

Среди водорослей есть одноклеточные и многоклеточные, некоторые водоросли достигают в длину 100-200 метров. Способ питания водорослей автотрофный: они синтезируют органические вещества в процессе фотосинтеза. Солнечный свет, проходя через толщу воды, рассеивается, что делает фотосинтез с увеличением глубины все труднее и труднее. Поэтому кроме хлорофилла они часто имеют и другие пигменты.

Клетки водорослей характеризуются наличием клеточной стенки (из целлюлозы и гликопротеинов - от греч. glykys сладкий (углеводы) + греч. prōtos — первый, важнейший (белок)) Органоиды располагаются в цитоплазме (син. - внеядерной протоплазме), где также располагается(-ются) один или несколько хроматофоров. Размножение происходит бесполым, вегетативным или половым путем.

Тело водорослей представлено слоевищем (син. - талломом) - недифференцированным скоплением клеток. С помощью ризоидов (от др.-греч. ῥίζα — корень и εἶδος — вид) водоросли прикрепляются к субстрату (камням, коралловым полипам), функцию всасывания ризоиды не выполняют. У водорослей отсутствуют настоящие ткани, механических тканей нет, так как таллом водоросли поддерживается (парит) в толще воды. Нет проводящих тканей: каждая клетка имеет доступ к воде напрямую, так что в клетку из окружающей воды поступает кислород, а в воду удаляется углекислый газ.

Хроматофор (от греч. chroma - цвет и phoros - несущий) - органелла в клетке водоросли, аналогичная хлоропласту и осуществляющая фотосинтез. Отличается от хлоропласта упрощенным строением, меньшим размером и иным составом хлорофилла. Внешне отличаются между собой по форме, хроматофор может быть: чашевидный, спиралевидный, в виде незамкнутых колец, цилиндрические, лентовидные, дисковидные. В хроматофорах находятся пигменты, которые придают окраску растению.

Система вакуолей в клетках водорослей развита отлично, в подвижных клетках водорослей можно обнаружить пульсирующие (сократительные) вакуоли. Их основная функция - поддержание постоянного осмотического давления внутри клетки. Вообразите: в глубине океана находится клетка водоросли, в которую постоянно поступает много воды. Если бы не было таких сократительных вакуолей, то клетка просто лопнула бы, но их работа обеспечивает удаление избытка воды.

Также у многих подвижных водорослей в клетках присутствует светочувствительный глазок (стигма), что обуславливает их чувствительность к свету - фототаксис. Подвижные водоросли стремятся занять как можно более освещенное место, чтобы активно шел процесс фотосинтеза.

Жизненный цикл водорослей

Жизненные циклы водорослей разнообразны, обусловлены рядом экологических факторов. Мы разберем жизненный цикл на примере зеленой водоросли ульвы (морского салата).

Для начала отметим, что в целом жизненный цикл водорослей представляет собой чередование двух фаз: гаплоидной (гаметофита) и диплоидной (спорофита). Гаплоидной фазой называется фаза, при которой клеточные ядра содержат непарный (половинный) набор хромосом. К гаплоидной фазе всегда принадлежат гаметы: сперматозоиды, спермии (отличающиеся от сперматозоидов отсутствием жгутика), яйцеклетки.

При слиянии двух гамет: яйцеклетки (n) и спермия (n) образуется зигота (2n) из которой развивается спорофит (2n), таким образом, в спорофите восстанавливается диплоидный набор хромосом. В зооспорангии на спорофите в результате мейоза образуются зооспоры (n), которые делятся митозом, порастают и образуют мужские и женские гаметофиты (n). Клетки гаметофитов делятся митозом, образуются гаметы (n), которые сливаются в зиготу (2n), цикл замыкается.

Типы половых процессов

У водорослей выделяют несколько типов полового процесса:

  • Изогамия - копулирующие элементы (гаметы) не отличаются друг от друга, подвижны
  • Анизогамия - от греч. anisos неравный и gamos брак (гетерогамия) - при таком типе копулирующие элементы различаются по размерам, форме, величине, поведению
  • Оогамия - от др. греч. ᾠόν яйцо и γάμος брак - копулирующие элементы резко отличаются друг от друга: крупная женская гамета без жгутиков обычно с мужской мелкой подвижной гаметой. Допустимо считать оогамию в некотором смысле подтипом анизогамии.

Особо стоит выделить тип полового процесса - конъюгацию. Конъюгация отличается тем, что сливаются не гаметы, а обычные вегетативные клетки, лишенные жгутиков. Клетки соединяются друг с другом с помощью боковых выростов, формируется копуляционный (конъюгационный) канал, по которому содержимое из одной клетки перетекает в другую - образуется зигоспора. В дальнейшем из зигоспоры развивается новая водоросль.

Отметим, что зооспора представляет собой подвижную клетку, которая способна двигаться в воде с помощью жгутиков. Образуется она в зооспорангии. Зооспора участвует в бесполом размножении у многих водорослей и простейших грибов. У некоторых водорослей имеются апланоспоры (гр. aplanes неподвижный + spora семя) - неподвижные безжгутиковые споры. Зооспоры и апланоспоры выходят в окружающую среду, разрывая стенки спорангия, в котором они находятся.

Значение водорослей

В Мировом океане водоросли составляют основную часть биомассы. Именно они являются главными продуцентами (производителями) органического вещества, преобразуя в ходе фотосинтеза энергию солнечного света в энергию химических связей. Значение водорослей для человека трудно переоценить: содержащиеся в них вещества необходимы для нормального роста и развития животных и человека (к примеру, морская капуста (ламинария) отличается большим содержанием йода.)

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

studarium.ru

Отдел зелёные водоросли, особенности строения, питание и размножение. Роль в природе и жизни человека — Студопедия

Есть одноклеточные, колониальные и многоклеточные зеленые водоросли; последние большей частью нитевидной, реже пластинчатой формы. Некоторые зеленые водоросли имеют т. н. неклеточное строение, т. е. тело их, несмотря на крупные размеры и иногда сложное внешнее расчленение, не разделено на клетки. Подвижные одноклеточные и колониальные формы, а также зооспоры и гаметы зеленых водорослей имеют 2—4, редко больше, жгутика и светочувствительный глазок. Клетки зеленых водорослей одноядерные или реже многоядерные, в большинстве случаев одеты оболочкой преимущественно из целлюлозы. Хроматофоры часто с пиреноидами.

Питание водорослей.Все вещества, необходимые для питания (СО2 и минеральные вещества) и дыхания (О2) водоросли поглощают из воды. Среди водорослей большинство питаются автотрофно, но почти все (особенно низко организованные) способны переходить к миксотрофному (смешанному) питанию, а некоторые могут полностью переходить нагетеротрофное питание (эвглена). При этом их клетки могут совсем утрачивать хлоропласты, поглощая готовые органические вещества всей поверхностью клетки. Интересно, что при наступлении благоприятных для фотосинтеза условий водоросли восстанавливают хлоропласты и свою способность осуществлять фотосинтез.

Размножение бесполое (зооспорами и неподвижными спорами), половое (изогамия, гетерогамия, оогамия, конъюгация) и вегетативное (одноклеточные — делением тела надвое, многоклеточные нитевидные — участками таллома). Функцию органов полового и бесполого размножения выполняют вегетативные клетки.

Водоросли чрезвычайно важны в окружающей среде. Ими выделяется кислород, так необходимый для дыхания животных, обитающих в водоемах. Водоросли являются кормом для некоторых видов рыб. В сельском хозяйстве морские водоросли используют как корм для скота, для удобрения полей. Из водорослей добывают йод, а также некоторые виды используют в пищу.

studopedia.ru

виды, полезные вещества, употребление в пищу, правила приготовления и обработки

Без съедобных водорослей не обходится почти ни одно блюдо у жителей азиатских стран. И если в древние времена к большинству видов водорослей относились насторожено, то теперь известно огромное количество водорослей, которые активно употребляются в пищу. Основная категория, по которой разделяют их на сорта, – это цвет. Они бывают красными, бурыми и зелеными.

Морские водоросли

В национальной кухне многих стран, и не только среди жителей Азии, самыми популярными и часто употребляемыми считаются следующие названия съедобных водорослей:

  • Ламинария, которую мы привыкли называть морской капустой. Эти водоросли относятся к бурым и считаются очень полезными. Морскую капусту рекомендуют есть при диете, а также добавляют в различные блюда для придания им изысканности.
  • Фукус пузырчатый также относится к категории бурых водорослей. А уникальность этого продукта в том, что состав этих водорослей аналогичен плазме крови.
  • Спирулина пользуется небывалой популярностью, но в странах СНГ приобрести ее можно только в качестве пищевой добавки или полуфабрикатов. Именно поэтому выращивать у нас ее пытаются в искусственных условиях.
  • Ульва - водоросли, которые также называют морским салатом. Продаются они у нас только в соленом и маринованном состоянии. Водоросли ульва напоминают внешне листья салата, имеют насыщенный зеленый цвет, но не темный, а светлый. Это указывает на то, что в этих съедобных зеленых водорослях содержится большое количество витаминов, которые исключительно положительно влияют на организм.
  • Вакаме также относятся к категории бурых водорослей и чаще всего употребляются в пищу в сушеном виде.
  • Далс относятся к категории красных водорослей и подаются обычно либо свежими, либо сушеными.
  • Карраген, который частенько называют ирландским мхом. Этот вид относится к категории бурых и имеет упругую, эластичную структуру, которая становится мягкой после того, как подвергнется термической обработке.

И этот список еще далеко не полный, а лишь заключает в себе самые часто используемые разновидности водорослей. Фото съедобных водорослей представлено ниже.

Какие свойства имеют водоросли?

Также нельзя забывать о нори, которые используются в приготовлении суши, а также вакамэ, агар-агар, комбу и многие другие. На самом деле водоросли – это многофункциональный продукт, некоторые сорта используются также в приготовлении десертов, в качестве желирующих загустителей. Чаще всего съедобные водоросли используются в приготовлении салатов и первых блюд. А морскую капусту можно даже употреблять в пищу как самостоятельное блюдо в качестве гарнира.

Пресноводные водоросли

На самом деле первый вариант от второго мало чем отличается. И морские, и пресноводные водоросли очень полезные и имеют необычный вкус. Однако к минусам сразу же можно отнести тот факт, что в пресноводных водорослях йода содержится чуть меньше. Самыми популярными пресными видами съедобных водорослей можно считать следующие:

  • Исландская водоросль – родимения. Это настоящий источник полезных микроэлементов, а специалисты советуют добавить их в рацион тем, кто страдает заболеваниями щитовидной железы.
  • Литотамния удивительна тем, что имеет необычный коралловый цвет. Но это не мешает ей занимать лидирующие позиции по полезности среди пресноводных водорослей. Съедобные красные водоросли очень эффектно смотрятся в блюдах.
  • Аонори частый гость на столе, ведь этот приятный аромат, замечательный вкус и нежная текстура никого не оставят равнодушным.

Чтобы водоросли принесли максимальную пользу организму, следует употреблять их в сушеных или свежих формах.

Польза водорослей

Морские съедобные водоросли – это ценный продукт, польза которого в активных веществах, витаминах, различных элементах, которые оказывают лишь положительное влияние на организм человека. Одно из самых важных свойств продукта – оказание противоопухолевого воздействия. Удивительным является тот факт, что морские жители очень схожи по своему составу с человеческой кровью. Какими еще свойствами обладают эти морские растения?

  • В составе водорослей находятся альгинаты – вещества, задача которых заключается в том, чтобы вывести из организма ионы тяжелых металлов.
  • Важным фактором является то, что в водорослях содержатся полезные жирные кислоты, именно поэтому регулярное потребление морских растений в пищу – это отличная профилактика ревматизма, сахарного диабета и различных заболеваний сердечно-сосудистой системы.
  • Пищевые волокна, которыми богаты водоросли, способствуют очищению кишечника и общему улучшению процессов пищеварения.
  • Также морские водоросли – это отличный способ укрепить иммунитет, поддержать тонус организма и избавляться от вредных вирусов и инфекций на ранних стадиях.

Помимо этого, некоторые сорта морских водорослей используются даже в производстве многих лекарств и лечебных добавок.

Использование водорослей в косметологии

Но и это еще не все, куда же косметология без водорослей? Используются морские жители для множества процедур, которые проводятся в салоне красоты и которые можно легко провести в домашних условиях. Также можно найти множество косметических продуктов, в состав которых входят морские водоросли. А для худеющих водоросли – настоящее спасение. Это не только низкокалорийный продукт, который поможет избавиться от лишнего веса, но и отличный ингредиент для обертываний, которые помогут справиться с целлюлитом и лишними сантиметрами на талии.

Употребление в пищу

С каждым годом водоросли, которые можно употреблять в пищу, становятся все более популярными, именно поэтому они активно используются в приготовлении самых изысканных блюд. Универсальности водорослей может позавидовать абсолютно любой продукт. Здесь в ход идут и гарниры, и салаты, и закуски, и без первых и вторых блюд никуда. А сушеные морские жители могут даже стать необычной специей, которая придаст вкусу новые нотки. Плюс продукта в том, что замечательно сочетается он со многими овощами, грибами, фруктами.

Вред и противопоказания

Самый большой вред водоросли могут принести только в том случае, если у человека имеется индивидуальная непереносимость. Чтобы избежать негативных последствий, лучше принимать в пищу морские растения в умеренных количествах. Также осторожнее с употреблением водорослей стоит быть тем, кто страдает туберкулезом, болезнями почек, щитовидной железы, язвой. В этих случаях лучше уточнить у врача, стоит ли употреблять съедобные водоросли в пищу или все-таки воздержаться.

Как применять в кулинарии?

Каждая разновидность водорослей может готовиться по-разному. Например, спирулину врачи рекомендуют добавлять абсолютно в любые вторые и первые блюда, ведь это настоящий источник витаминов и микроэлементов. Благодаря спирулине можно сделать экстравагантное блюдо, так как продукт придает приятный изумрудно-зеленый оттенок. Добавляют данный вид водорослей не только в салаты, но и в омлеты, и даже в тесто для выпечки. При этом блюдо приобретет дополнительный приятный коричный вкус. Что касается ульвы, то это продукт чуть ли не номер один в скандинавской, ирландской и, конечно же, китайский и японской национальных кухнях. Чаще всего используется в салатах и супах, однако нередко можно встретить морской салат как самостоятельное блюдо. А если к нему добавить еще лимонный сок и немного лука, получится очень вкусно.

Из ульвы можно приготовить самые настоящие полезные чипсы. Для этого нужно тщательно вымыть листья в соленой воде и высушить на подоконнике под солнышком. Через два часа можно похрустеть вкусными и здоровыми чипсами. Что касается таких зеленых водорослей, как аонори, то полюбились они кулинарам за нежный вкус и приятный аромат. Многофункциональность продукта удивляет. Водоросли можно использовать как приправу, можно даже просто потушить и подавать как гарнир вместе с соевым соусом. Использование водорослей в привычных блюдах – это возможность вдохнуть в привычную еду новую жизнь. Специалисты рекомендуют покупать исключительно сушеные или свежие водоросли. И не забывайте, что польза – это мера, переедать не стоит, так как при некоторых заболеваниях это может привести к пагубным последствиям.

fb.ru

Одноклеточные водоросли. Хлорелла, хламидамонада, эвглена зеленая

Автор статьи - Л.В. Окольнова.

Наверняка вы не раз слышали, что растения производят необходимый всему живому для дыхания кислород…
Это верно. Но где кислорода больше? На лугах, в лесу? В тропических лесах?

Самыми производительными “кислородными фабриками” планеты Земля считается водные экосистемы.
Из наземных - болота, из водных - фитопланктон в морях и океанах.

Давайте рассмотрим самых “популярных” представителей одноклеточных водорослей.
Это “передовики” фотосинтеза, различимые только с помощью микроскопа.

Хлорелла

Строение:
- клетка - шарик,
- есть ядро (эукариотический организм),
- хроматофор, который осуществляет фотосинтез.

И все. Как видите, строение совсем простое.
А теперь рассмотрим функции - вы удивитесь, сколько пользы может быть от одноклеточного организма.

1. Хлореллу используют на космических станциях для получения кислорода. Размножается она быстро и к условиям содержания непритязательна.
2. Это очень питательный организм.

Во-первых, как и все растения, это продуцент, т.е. производитель органических веществ и энергии в водной экосистеме.
Во-вторых, фитопланктоном питаются многие водные членистоногие, мальки рыб.
В третьих, в животноводстве активно используют хлореллу в виде корма для скота, кроликов и птиц. По калорийности она в 2 раза питательней пшеницы.

3. Этот организм способен очищать воду - хлорелла - природный фильтр.

Размножение:
Прямое деление - амитоз - простое деление напополам.

Хламидамонада

Строение:
- есть ядро,
- клеточная стенка,
- хроматофор,
- светочувствительный глазок - с его помощью организм ищет свет, двигается в этом направлении и фотосинтезирует,
- жгутики (орган передвижения).

Размножение: бесполое и половое (спорами)
Так же, как и хлорелла, это растение - фильтрат, но половое размножение дало возможность использовать ее для генетических исследований - размножается она быстро и имеет довольно простой генетический материал, на котором легко отслеживать изменения и вносимые модификации.

Эвглена зеленая

Странный организм. Странный тем, что принадлежит двум царствам - и к растениям, и к животным.
Все дело в том, что на свету это автотрофный организм - питание фотосинтезом, все как у растений, а в темноте хлоропласты становятся прозрачными, не функционируют и эвглена питается гетеротрофно - как животные.

Размножение:
Бесполое, напополам.

ege-study.ru

Как водоросли из питания для лошадей превратилась в популярный БАД?

Многих удивляет, если не смущает, ЗОЖНый тренд последних лет — сине-зеленые водоросли (BGA) как продукт здорового питания и более того супер фуд!

Мало того, что это звучит странно, так еще и поиск в Google на первых местах выдает новости о чиновниках, воюющих с токсичной водорослей, которая заполонила местные озера.

Тем не менее, многие божатся, что водоросли, употребленные в пищу, способствуют повышению энергии и вообще очень положительно влияют на самочувствие.

Как правило, самые популярные на сегодняшней день представители сине-зеленых водослей, которые потребляются в виде добавок, это спирулина, хлорелла и самые модные на Западе водоросли — Афанизоменон флос-акве (AFA) или сине-зеленая водоросль Альгае.

Звучит красиво, на деле это солоноватоводный и пресноводный вид цианобактерий, встречающийся по всему миру, включая Балтийское море и Великие озера.

Спирулина существует на рынке более десяти лет (но, кстати, достоверных источников об ее истинной пользе так и не появилось), а вот афаниземон стала популярной только в последнее время.

Одна из самых известных форм AFA — E3Live, органическая водоросль, добываемый в озере Верхний Кламат в южной части центрального Орегона.

В своей естественной форме AFA выглядит как мелкие, похожие на траву, зеленые волоски, состоящие из отдельных клеток.

Считается, что этот вид водорослей содержит в себе более 65 витаминов, минералов, аминокислот, сложных углеводов, фитохимических веществ и следовых количеств незаменимых жирных кислот.

Эта водоросль была обнаружена в 1970-х годах Виктором Колманом, который, как гласит легенда, искал способ прокормить ученых НАСА.

Вообще, это одна из самых любимых американских легенд для продажи чего угодно: от БАДов до «сверх прочных» носков. Как у нас «секретные разработки ученых из СССР».

Страшно представить, сколько всего бедным ученым из НАСА пришлось слопать за свою жизнь!

Но вернемся к водоросли.

В 1990-х годах она стала популярной добавкой для скаковых лошадей после того, как Тамера Кэмпбелл, ныне генеральный директор компании E3Live, начала продавать ее тренерам для кормления своих чистокровных пород в Кентукки.

Собственно, на сайте, наравне с продукцией для людей, продаются добавки для лошадей, котов и собак

Из-за большого спроса Кэмпбелл в конечном итоге начала продавать добавку и для людей.

«У нас были куча владельцев лошадей, которые наблюдали за тем, как животные менялись после употребления водорослей, и после этого просили сделать такую добавку и для них» рассказывает Кэмпбелл.

Теперь E3Live продается в виде порошка, капсул или в замороженном виде в магазинах здоровой пищи и на Amazon.

Это делается для того, чтобы быть уверенным в том, что все полезны вещества были сохранены в первозданном виде, мол, важно есть водоросли живыми, а не высушенными или таблетированными.

Тем не менее, диетологи предупреждают нас о том, что водоросли могут быть токсичными, поэтому важно быть осторожными при употреблении оных..

Стоит помнить, что данные водоросли вызывают цветение озер и их натуральность и экологичность не делает их «чистыми» и безвредными — многие яды также растительного происхождения.

Кроме того, мы хотим еще раз подчеркнуть, что водоросли — пусть даже с Айхерба и из Америки, пусть высушенные на солнце и приправленные каким-нибудь витаминов для острастки — все еще просто водоросли.

Это не амброзия, не манна небесная, не таблетка от любых болезней и не гарантия вашего здоровья.

Важно знать: на сегодняшний день, врачи сходятся во мнении, что в спирулине и АФА в виде пищевых добавок содержится малое и незначительное количество питательных веществ, так что рассчитывать можно, скорее, на эффект плацебо, как и в случае с гомеопатией.

Водоросли не содержат никаких питательных веществ, которые нельзя получить из обычной пищи.

Нас очень «умиляют» рекламы, в которых торжественно заявляется, что в, например, спирулине, столько же аминокислот, сколько в яйцах.

Но, простите, сколько нужно съесть первого и второго продукта, чтобы получить дневную норму белка? И какая будет разница в цене и вкусовых ощущениях?

Мы уже писали в нашей статье про суперфуды, что тот факт, что на другой стороне планеты какой то народ употребляет продукт, необычных для нашего сознания, не делает его бесконечно полезным.

В Америки, например, сейчас идет бум на комбучу или наш родной чайный гриб, а также полезнейший ферментированный продукт, любимый многими русскими на протяжении уже нескольких столетий, квашенную капусту!

Полезные свойства чайного гриба преувеличены

Смысла заменять обычную, вкусную, любимую вами еду на заграничный аналог только потому, что он заграничный и незнакомый — не нужно.

Конечно, вас на это старательно подталкивают различные фирмы — им выгодно, чтобы вы покупали все больше и больше добавок с недоказанной эффективностью и несли свои деньги.

Поэтому ничего удивительного, что владелица E3Live описывает положительные эффекты от употребления в пищу добавок их производства вот так:

«По отзывам, большинство людей замечают, что после длительного приема водорослей у них появляется больше энергии, они в целом чувствуют себя лучше, становятся более бодрыми и особо отмечают улучшения пищеварения», — говорит Кэмпбелл.

«Кроме того, у многих становятся лучше волосы, а кожа и ногти выглядят здоровыми! А для любителей потягать железо важным плюсом становится лучшее сохранение уровня энергии в течении всей тренировки и после нее!»

Но подумайте сами: вряд ли человек, который занимается спортом, следит за новинками пп индустрии и употребляет водоросли, при этом питается в Макдональдсе 3 раза в день.

Скорее всего, он в целом ведет здоровый образ жизни, который, уж конечно, самым наилучшим образом сказывается и на пищеварении, и на внешнем виде, и на уровне энергии.

И, как мы говорили, эффект плацебо никто не отменял. Как и банальную ошибку: положительные изменения, которые происходят с вашим здоровьем, могут проходить параллельно с приемом какой-либо добавки, но не быть прямым следствием оного.

Однофакторная корреляции — еще не равно зависимость.

Также у некоторых срабатывает знаменитый эффект «деньги же уплочены» (между прочим, небольшая баночка порошкообразных водорослей E3Live стоят аж 30 долларов).

А между прочим, по мнению диетологов, на сегодняшний день все также стоит вопрос даже в том, стоит ли добавлять водоросли даже к основному рациону.

Так что не слишком уж доверяйте призывам срочно питаться водорослями или другим супер фудами — не всегда еда для лошадей будет такой уж необходимой и для человека!

[Всего голосов: 1    Средний: 5/5]

Данная статья проверена дипломированным диетологом, который имеет степень бакалавра в области питания и диетологии, Веремеевым Д.Г.

kost-shirokaya.ru

: Как выбирать продукты :: «ЖИВИ!»

© Corbis/Fotosa.ru

Я честно попыталась приучить себя к водорослям. Вдохновили научные исследования: витаминов и минералов в этой экзотической еде в десятки раз больше, чем в самых полезных овощах и фруктах. Но все оказалось не так просто.

В обычном магазине выбор невелик: чаще всего попадаются консервированная морская капуста (ламинария), нори и фукус. Морская капуста содержит около 40 полезных веществ. Особенно ценна йодом (редко из каких продуктов йод так же хорошо усваивается — почти на 100%) и альгиновой кислотой. Она и радионуклиды.

Но морская капуста в консервах меня настораживает: слишком много соли, масла и уксуса. К тому же понятно, что витаминов и микроэлементов в ней гораздо меньше, чем в свежих водорослях.

Водоросль фукус, если верить аннотации, укрепляет кости, волосы, ногти и зубы, препятствует образованию тромбов, ускоряет расщепление жиров и творит пропасть других чудес. Только вкус гадкий. Фукус продается в высушенном и измельченном в крупу виде — резковатый рыбный запах, а когда размокнет, еще и горчит.

© Денис Быковских

Я бы так и похоронила идею включить водоросли в рацион, если бы не нори. Тонкие, как бумага, пластинки высушенных водорослей оказались со вкусом жареных семечек. В нори здорово заворачивать суши и сыроедные роллы, ломтики огурцов и авокадо, паштеты. Крошить их в смузи, супы, рагу и омлеты вместо соли или просто есть как чипсы. Вкусная и полезная закуска: в нори в три раза больше кальция, чем в молоке, плюс есть йод, витамины C, A, B12, B2 и D.

© Денис Быковских

Друзья и веганы рассказали про спирулину. И в Европе, и у нас на спирулине зарабатывают маркетологи — продают как дефицитное лекарство. Вылечить обещают все на свете, от лишнего веса и облысения до рака. Эта микроводоросль вправду содержит намного больше витаминов и минералов, чем обычная еда. Например, в ней в десятки раз больше железа, чем в мясе, и бета-каротина, чем в моркови.

© Денис Быковских

Купить живую спирулину у нас в стране практически нереально. В основном ее продают в виде таблеток через интернет и часто подделывают.

Утешает то, что спирулину вполне реально вырастить дома. Эту идею продвигает блогер и журналист Ника Дубровская. «Спирулина — качественная еда, которую может растить ленивый житель мегаполиса, такой как я, — говорит она. — При правильном уходе в лаборатории она делится восемь раз в день. Если ее просто помешивать дома в банке, она растет медленнее, но достаточно, чтобы накормить семью. Требует минимального ухода: вода, свет и добавки, как для выращивания комнатных цветов».

Можно получить образец спирулины бесплатно через интернет и попробовать вырастить самому — Ника обновляет информацию и делится опытом .

Я попробовала настоящую, не в таблетках, спирулину благодаря инструктору «ЖИВИ!» Алексею Меркулову. Он привез водоросли с фермы во французской Нормандии, где их выращивают в экологически чистых условиях. Могу сказать, что спирулина — самая вкусная водоросль из десятка тех, что я ела. Напоминает грибы пополам с орехами и очень нежно пахнет морем.

Наша редакция готова была есть ее с утра до вечера, но Алексей сразу предупредил, что много нельзя, особенно на ночь — это сильное стимулирующее средство, как и . Начинать лучше с четверти чайной ложки и постепенно увеличить до одной чайной ложки в день. Во время болезни или больших физических нагрузок можно съедать больше — 10–15 г. Кстати, эта норма касается любых водорослей.

«Спирулину добавляют в соки и салаты с цитрусовыми (с витамином C железо из водоросли лучше усваивается). Другая хорошая идея — сделать соус тартар со спирулиной, — советует Алексей Меркулов. — Нужно измельчить лук, чеснок и имбирь, замариновать в лимонном соке. Размочить спирулину в воде, пока она не станет пастообразной. Порезать мелко помидоры и авокадо, все смешать. Отлично идет со свежим хлебом или хлебцами».

Но как бы хороша ни была спирулина, необязательно делать ставку только на нее. «Каждая водоросль по-своему полезна и уникальна, — сказал мне Руслан Геворгиз, руководитель группы управления биосинтезом микроводорослей Института биологии южных морей им. А. О. Ковалевского (Севастополь). — Лучший вариант — попробовать все доступные виды съедобных водорослей и опытным путем найти свою норму». Главное — не заставлять себя есть их через силу.

 

Еще 5 полезных водорослей

 

Водоросли Как есть Зачем Тонкости
Ламинария (сушеная морская капуста) Как заменитель соли в супах, омлетах, гарнирах с рисом / гречкой / бобовыми. С тертой морковкой, луком, оливками, соком лимона и кунжутом — вкуснейшая начинка для бутербродов Около 40 полезных веществ, включая йод, кальций и альгиновую кислоту В аптеках продается измельченная сушеная ламинария — она полезнее консервированной
Хидзики Блюда с картофелем и бобовыми, жареными овощами, кунжутным маслом Железо и кальций Хорошо переносит термообработку и намного увеличивается в размерах после замачивания
Вакаме В супах-пюре Витамины A, C и E, фосфор, кальций, железо, магний, марганец и медь Если развести водой, посолить и добавить специй, орехов, сок лимона — вкуснейший водорослевый суп
Араме В салатах и с пассерованными овощами, сыром тофу, йогуртной заправкой Много кальция, железа и йода У араме сладковатый привкус, идеально сочетается со свеклой, морковью и тыквой
Комбу Рыбные блюда и гарниры с рисом, острые соусы Нормализует гормональный фон, снижает давление и поддерживает стабильный уровень сахара в крови Ярко выраженный морской вкус

www.jv.ru


Смотрите также